2.3.10 first order ode exact

Table 2.395: first order ode exact

#

ODE

CAS classification

Solved?

1

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

2

\[ {}y^{\prime } = \left (-2+x \right )^{2} \]
i.c.

[_quadrature]

3

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

4

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

5

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

6

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

7

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

8

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

9

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

10

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

19

\[ {}y^{\prime } = -y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

20

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

21

\[ {}y^{\prime } = y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

22

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

23

\[ {}y^{\prime } = y-x +1 \]

[[_linear, ‘class A‘]]

24

\[ {}y^{\prime } = x +1-y \]

[[_linear, ‘class A‘]]

25

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

26

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

27

\[ {}y^{\prime } = 2 y^{2} x^{2} \]
i.c.

[_separable]

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

33

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

34

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

35

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

37

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

38

\[ {}y^{\prime } = y-x \]
i.c.

[[_linear, ‘class A‘]]

41

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

42

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

43

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

44

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

46

\[ {}y^{\prime } = 3 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

47

\[ {}y^{\prime } = 64^{{1}/{3}} \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

48

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

49

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

51

\[ {}y^{\prime } = x y^{3} \]

[_separable]

52

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

53

\[ {}y^{3} y^{\prime } = \left (1+y^{4}\right ) \cos \left (x \right ) \]

[_separable]

54

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

55

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

56

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

57

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

59

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

60

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

61

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

62

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

63

\[ {}y^{\prime }+1 = 2 y \]
i.c.

[_quadrature]

64

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

65

\[ {}-y+x y^{\prime } = 2 x^{2} y \]
i.c.

[_separable]

66

\[ {}y^{\prime } = 2 x y^{2}+3 y^{2} x^{2} \]
i.c.

[_separable]

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

71

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

72

\[ {}y^{\prime } = y \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

73

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

74

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

75

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

76

\[ {}y^{\prime }-2 x y = {\mathrm e}^{x^{2}} \]

[_linear]

77

\[ {}x y^{\prime }+2 y = 3 x \]
i.c.

[_linear]

78

\[ {}x y^{\prime }+5 y = 7 x^{2} \]
i.c.

[_linear]

79

\[ {}2 x y^{\prime }+y = 10 \sqrt {x} \]

[_linear]

80

\[ {}3 x y^{\prime }+y = 12 x \]

[_linear]

81

\[ {}-y+x y^{\prime } = x \]
i.c.

[_linear]

82

\[ {}2 x y^{\prime }-3 y = 9 x^{3} \]

[_linear]

83

\[ {}x y^{\prime }+y = 3 x y \]
i.c.

[_separable]

84

\[ {}x y^{\prime }+3 y = 2 x^{5} \]
i.c.

[_linear]

85

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

86

\[ {}x y^{\prime }-3 y = x^{3} \]
i.c.

[_linear]

87

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

88

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

89

\[ {}\left (x +1\right ) y^{\prime }+y = \cos \left (x \right ) \]
i.c.

[_linear]

90

\[ {}x y^{\prime } = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

91

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

92

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

93

\[ {}x y^{\prime } = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

94

\[ {}y^{\prime } = 2 x y+3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

95

\[ {}x y^{\prime }+\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

96

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

97

\[ {}y^{\prime } \left (x^{2}+1\right )+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

101

\[ {}y^{\prime } = 1+2 x y \]

[_linear]

102

\[ {}2 x y^{\prime } = y+2 x \cos \left (x \right ) \]
i.c.

[_linear]

103

\[ {}y^{\prime }+p \left (x \right ) y = 0 \]

[_separable]

104

\[ {}y^{\prime }+p \left (x \right ) y = q \left (x \right ) \]

[_linear]

105

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

106

\[ {}2 x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

108

\[ {}y^{\prime } \left (x -y\right ) = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

109

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

110

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

111

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

113

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

114

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

115

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

119

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

122

\[ {}\left (x +y\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

124

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

129

\[ {}y^{2} \left (x y^{\prime }+y\right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

130

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

131

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

132

\[ {}x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

133

\[ {}2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

134

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

135

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

136

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

137

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

138

\[ {}2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

139

\[ {}x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

140

\[ {}1+y \,{\mathrm e}^{x y}+\left (2 y+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

141

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

142

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

[_exact]

143

\[ {}3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

144

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact]

145

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

146

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

163

\[ {}y^{\prime } = \frac {x -y-1}{x +y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

166

\[ {}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

173

\[ {}x^{\prime } = 1-x^{2} \]
i.c.

[_quadrature]

174

\[ {}x^{\prime } = 9-4 x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

179

\[ {}x^{3}+3 y-x y^{\prime } = 0 \]

[_linear]

180

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

181

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

182

\[ {}2 x y^{3}+{\mathrm e}^{x}+\left (3 y^{2} x^{2}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

183

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

184

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

185

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

188

\[ {}y^{\prime } = 1+x^{2}+y^{2}+y^{2} x^{2} \]

[_separable]

189

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

190

\[ {}6 x y^{3}+2 y^{4}+\left (9 y^{2} x^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

191

\[ {}4 x y^{2}+y^{\prime } = 5 x^{4} y^{2} \]

[_separable]

193

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

195

\[ {}{\mathrm e}^{x}+y \,{\mathrm e}^{x y}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

198

\[ {}x y^{\prime }+3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

199

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

201

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

203

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

204

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

205

\[ {}3 y+x^{3} y^{4}+3 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

206

\[ {}x y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

[_linear]

207

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

209

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

210

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

211

\[ {}y^{\prime } = -\frac {3 x^{2}+2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

212

\[ {}y^{\prime } = \frac {3 y+x}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

213

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

214

\[ {}y^{\prime } = \frac {\sqrt {y}-y}{\tan \left (x \right )} \]

[_separable]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

651

\[ {}y^{\prime } = 2 x +1 \]
i.c.

[_quadrature]

652

\[ {}y^{\prime } = \left (-2+x \right )^{2} \]
i.c.

[_quadrature]

653

\[ {}y^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

654

\[ {}y^{\prime } = \frac {1}{x^{2}} \]
i.c.

[_quadrature]

655

\[ {}y^{\prime } = \frac {1}{\sqrt {x +2}} \]
i.c.

[_quadrature]

656

\[ {}y^{\prime } = x \sqrt {x^{2}+9} \]
i.c.

[_quadrature]

657

\[ {}y^{\prime } = \frac {10}{x^{2}+1} \]
i.c.

[_quadrature]

658

\[ {}y^{\prime } = \cos \left (2 x \right ) \]
i.c.

[_quadrature]

659

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]
i.c.

[_quadrature]

660

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]
i.c.

[_quadrature]

661

\[ {}y^{\prime } = -y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

662

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

663

\[ {}y^{\prime } = y-\sin \left (x \right ) \]

[[_linear, ‘class A‘]]

664

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

665

\[ {}y^{\prime } = y-x +1 \]

[[_linear, ‘class A‘]]

666

\[ {}y^{\prime } = x +1-y \]

[[_linear, ‘class A‘]]

667

\[ {}y^{\prime } = x^{2}-y \]

[[_linear, ‘class A‘]]

668

\[ {}y^{\prime } = x^{2}-y-2 \]

[[_linear, ‘class A‘]]

669

\[ {}y^{\prime } = 2 y^{2} x^{2} \]
i.c.

[_separable]

670

\[ {}y^{\prime } = x \ln \left (y\right ) \]

[_separable]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

673

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

674

\[ {}y y^{\prime } = x -1 \]
i.c.

[_separable]

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

677

\[ {}y^{\prime }+2 x y = 0 \]

[_separable]

678

\[ {}y^{\prime }+2 x y^{2} = 0 \]

[_separable]

679

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

680

\[ {}\left (x +1\right ) y^{\prime } = 4 y \]

[_separable]

682

\[ {}y^{\prime } = 3 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

683

\[ {}y^{\prime } = 4 \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

684

\[ {}y^{\prime } = 2 x \sec \left (y\right ) \]

[_separable]

685

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 2 y \]

[_separable]

687

\[ {}y^{\prime } = x y^{3} \]

[_separable]

688

\[ {}y y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

689

\[ {}y^{\prime } = \frac {1+\sqrt {x}}{1+\sqrt {y}} \]

[_separable]

690

\[ {}y^{\prime } = \frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \]

[_separable]

691

\[ {}\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime } = x \]

[_separable]

692

\[ {}y^{\prime } = 1+x +y+x y \]

[_separable]

694

\[ {}y^{\prime } = y \,{\mathrm e}^{x} \]
i.c.

[_separable]

695

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right ) \]
i.c.

[_separable]

696

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]
i.c.

[_separable]

697

\[ {}y^{\prime } = 4 x^{3} y-y \]
i.c.

[_separable]

698

\[ {}y^{\prime }+1 = 2 y \]
i.c.

[_quadrature]

699

\[ {}\tan \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

700

\[ {}-y+x y^{\prime } = 2 x^{2} y \]
i.c.

[_separable]

701

\[ {}y^{\prime } = 2 x y^{2}+3 y^{2} x^{2} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

705

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

706

\[ {}y^{\prime }+3 y = 2 x \,{\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

707

\[ {}y^{\prime }-2 x y = {\mathrm e}^{x^{2}} \]

[_linear]

708

\[ {}x y^{\prime }+2 y = 3 x \]
i.c.

[_linear]

709

\[ {}2 x y^{\prime }+y = 10 \sqrt {x} \]
i.c.

[_linear]

710

\[ {}2 x y^{\prime }+y = 10 \sqrt {x} \]

[_linear]

711

\[ {}3 x y^{\prime }+y = 12 x \]

[_linear]

712

\[ {}-y+x y^{\prime } = x \]
i.c.

[_linear]

713

\[ {}2 x y^{\prime }-3 y = 9 x^{3} \]

[_linear]

714

\[ {}x y^{\prime }+y = 3 x y \]
i.c.

[_separable]

715

\[ {}x y^{\prime }+3 y = 2 x^{5} \]
i.c.

[_linear]

716

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

717

\[ {}x y^{\prime }-3 y = x^{3} \]
i.c.

[_linear]

718

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

719

\[ {}y^{\prime } = \left (1-y\right ) \cos \left (x \right ) \]
i.c.

[_separable]

720

\[ {}\left (x +1\right ) y^{\prime }+y = \cos \left (x \right ) \]
i.c.

[_linear]

721

\[ {}x y^{\prime } = 2 y+x^{3} \cos \left (x \right ) \]

[_linear]

722

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

723

\[ {}y^{\prime } = 1+x +y+x y \]
i.c.

[_separable]

724

\[ {}x y^{\prime } = 3 y+x^{4} \cos \left (x \right ) \]
i.c.

[_linear]

725

\[ {}y^{\prime } = 2 x y+3 x^{2} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

726

\[ {}x y^{\prime }+\left (2 x -3\right ) y = 4 x^{4} \]

[_linear]

727

\[ {}\left (x^{2}+4\right ) y^{\prime }+3 x y = x \]
i.c.

[_separable]

728

\[ {}y^{\prime } \left (x^{2}+1\right )+3 x^{3} y = 6 x \,{\mathrm e}^{-\frac {3 x^{2}}{2}} \]
i.c.

[_linear]

729

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

730

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

732

\[ {}y^{\prime } \left (x -y\right ) = x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

733

\[ {}x \left (x +y\right ) y^{\prime } = \left (x -y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

734

\[ {}\left (x +2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

735

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

737

\[ {}x^{2} y^{\prime } = x y+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

738

\[ {}x y y^{\prime } = x^{2}+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

739

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

743

\[ {}x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

748

\[ {}y^{2} y^{\prime }+2 x y^{3} = 6 x \]

[_separable]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

753

\[ {}y^{2} \left (x y^{\prime }+y\right ) \sqrt {x^{4}+1} = x \]

[_Bernoulli]

754

\[ {}3 y^{2} y^{\prime }+y^{3} = {\mathrm e}^{-x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

755

\[ {}3 x y^{2} y^{\prime } = 3 x^{4}+y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

756

\[ {}x \,{\mathrm e}^{y} y^{\prime } = 2 \,{\mathrm e}^{y}+2 x^{3} {\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

757

\[ {}2 x \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 4 x^{2}+\sin \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

758

\[ {}\left ({\mathrm e}^{y}+x \right ) y^{\prime } = x \,{\mathrm e}^{-y}-1 \]

[[_1st_order, _with_linear_symmetries]]

759

\[ {}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

760

\[ {}4 x -y+\left (6 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

761

\[ {}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

762

\[ {}2 x y^{2}+3 x^{2}+\left (2 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

763

\[ {}x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

764

\[ {}1+y \,{\mathrm e}^{x y}+\left (2 y+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

765

\[ {}\cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

766

\[ {}x +\arctan \left (y\right )+\frac {\left (x +y\right ) y^{\prime }}{1+y^{2}} = 0 \]

[_exact]

767

\[ {}3 x^{2} y^{3}+y^{4}+\left (3 x^{3} y^{2}+y^{4}+4 x y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

768

\[ {}{\mathrm e}^{x} \sin \left (y\right )+\tan \left (y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )+x \sec \left (y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact]

769

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

770

\[ {}\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

771

\[ {}x^{3}+3 y-x y^{\prime } = 0 \]

[_linear]

772

\[ {}x y^{2}+3 y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

773

\[ {}x y+y^{2}-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

774

\[ {}2 x y^{3}+{\mathrm e}^{x}+\left (3 y^{2} x^{2}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

775

\[ {}3 y+x^{4} y^{\prime } = 2 x y \]

[_separable]

776

\[ {}2 x y^{2}+x^{2} y^{\prime } = y^{2} \]

[_separable]

777

\[ {}2 x^{2} y+x^{3} y^{\prime } = 1 \]

[_linear]

780

\[ {}y^{\prime } = 1+x^{2}+y^{2}+y^{2} x^{2} \]

[_separable]

781

\[ {}x^{2} y^{\prime } = x y+3 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

782

\[ {}6 x y^{3}+2 y^{4}+\left (9 y^{2} x^{2}+8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

785

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

787

\[ {}{\mathrm e}^{x}+y \,{\mathrm e}^{x y}+\left ({\mathrm e}^{y}+x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

790

\[ {}x y^{\prime }+3 y = \frac {3}{x^{{3}/{2}}} \]

[_linear]

791

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x -1\right ) y = 1 \]

[_linear]

793

\[ {}{\mathrm e}^{y}+y \cos \left (x \right )+\left (x \,{\mathrm e}^{y}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

795

\[ {}2 y+\left (x +1\right ) y^{\prime } = 3 x +3 \]

[_linear]

796

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

797

\[ {}3 y+x^{3} y^{4}+3 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

798

\[ {}x y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

[_linear]

799

\[ {}\left (2 x +1\right ) y^{\prime }+y = \left (2 x +1\right )^{{3}/{2}} \]

[_linear]

800

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

801

\[ {}y^{\prime } = 3 \left (y+7\right ) x^{2} \]

[_separable]

802

\[ {}y^{\prime } = x y^{3}-x y \]

[_separable]

803

\[ {}y^{\prime } = \frac {-3 x^{2}-2 y^{2}}{4 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

804

\[ {}y^{\prime } = \frac {3 y+x}{y-3 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

805

\[ {}y^{\prime } = \frac {2 x y+2 x}{x^{2}+1} \]

[_separable]

806

\[ {}y^{\prime } = \cot \left (x \right ) \left (\sqrt {y}-y\right ) \]

[_separable]

1065

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1098

\[ {}y^{\prime }+3 y = {\mathrm e}^{-2 t}+t \]

[[_linear, ‘class A‘]]

1099

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} t^{2} \]

[[_linear, ‘class A‘]]

1100

\[ {}y^{\prime }+y = 1+t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1101

\[ {}\frac {y}{t}+y^{\prime } = 3 \cos \left (2 t \right ) \]

[_linear]

1102

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1103

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]

[_linear]

1104

\[ {}2 t y+y^{\prime } = 2 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

1105

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

1106

\[ {}y+2 y^{\prime } = 3 t \]

[[_linear, ‘class A‘]]

1107

\[ {}-y+t y^{\prime } = t^{2} {\mathrm e}^{-t} \]

[_linear]

1108

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1109

\[ {}y+2 y^{\prime } = 3 t^{2} \]

[[_linear, ‘class A‘]]

1110

\[ {}-y+y^{\prime } = 2 \,{\mathrm e}^{2 t} t \]
i.c.

[[_linear, ‘class A‘]]

1111

\[ {}2 y+y^{\prime } = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1112

\[ {}2 y+t y^{\prime } = t^{2}-t +1 \]
i.c.

[_linear]

1113

\[ {}\frac {2 y}{t}+y^{\prime } = \frac {\cos \left (t \right )}{t^{2}} \]
i.c.

[_linear]

1114

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1115

\[ {}2 y+t y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

1116

\[ {}4 t^{2} y+t^{3} y^{\prime } = {\mathrm e}^{-t} \]
i.c.

[_linear]

1117

\[ {}\left (t +1\right ) y+t y^{\prime } = t \]
i.c.

[_linear]

1118

\[ {}-\frac {y}{2}+y^{\prime } = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1119

\[ {}-y+2 y^{\prime } = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1120

\[ {}-2 y+3 y^{\prime } = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

1121

\[ {}\left (t +1\right ) y+t y^{\prime } = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1122

\[ {}2 y+t y^{\prime } = \frac {\sin \left (t \right )}{t} \]
i.c.

[_linear]

1123

\[ {}\cos \left (t \right ) y+\sin \left (t \right ) y^{\prime } = {\mathrm e}^{t} \]
i.c.

[_linear]

1124

\[ {}\frac {y}{2}+y^{\prime } = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1125

\[ {}\frac {2 y}{3}+y^{\prime } = 1-\frac {t}{2} \]

[[_linear, ‘class A‘]]

1126

\[ {}\frac {y}{4}+y^{\prime } = 3+2 \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1127

\[ {}-y+y^{\prime } = 1+3 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1128

\[ {}-\frac {3 y}{2}+y^{\prime } = 2 \,{\mathrm e}^{t}+3 t \]

[[_linear, ‘class A‘]]

1129

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1130

\[ {}y^{\prime } = \frac {x^{2}}{\left (x^{3}+1\right ) y} \]

[_separable]

1131

\[ {}\sin \left (x \right ) y^{2}+y^{\prime } = 0 \]

[_separable]

1132

\[ {}y^{\prime } = \frac {3 x^{2}-1}{3+2 y} \]

[_separable]

1133

\[ {}y^{\prime } = \cos \left (x \right )^{2} \cos \left (2 y\right )^{2} \]

[_separable]

1134

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

1136

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1137

\[ {}y^{\prime } = \left (-2 x +1\right ) y^{2} \]
i.c.

[_separable]

1138

\[ {}y^{\prime } = \frac {-2 x +1}{y} \]
i.c.

[_separable]

1139

\[ {}x +y y^{\prime } {\mathrm e}^{-x} = 0 \]
i.c.

[_separable]

1140

\[ {}r^{\prime } = \frac {r^{2}}{x} \]
i.c.

[_separable]

1141

\[ {}y^{\prime } = \frac {2 x}{y+x^{2} y} \]
i.c.

[_separable]

1142

\[ {}y^{\prime } = \frac {x y^{2}}{\sqrt {x^{2}+1}} \]
i.c.

[_separable]

1143

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1144

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right )}{4 y^{3}} \]
i.c.

[_separable]

1145

\[ {}y^{\prime } = \frac {-{\mathrm e}^{x}+3 x^{2}}{-5+2 y} \]
i.c.

[_separable]

1146

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

1147

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1148

\[ {}\sqrt {-x^{2}+1}\, y^{2} y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

1149

\[ {}y^{\prime } = \frac {3 x^{2}+1}{-6 y+3 y^{2}} \]
i.c.

[_separable]

1150

\[ {}y^{\prime } = \frac {3 x^{2}}{-4+3 y^{2}} \]
i.c.

[_separable]

1151

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

1152

\[ {}y^{\prime } = \frac {2-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

1153

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{3+2 y} \]
i.c.

[_separable]

1154

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

1155

\[ {}y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

[_separable]

1156

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]

[_separable]

1157

\[ {}y^{\prime } = \frac {a y+b}{d +c y} \]

[_quadrature]

1159

\[ {}y^{\prime } = \frac {x^{2}+3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1164

\[ {}y^{\prime } = \frac {x^{2}-3 y^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1165

\[ {}y^{\prime } = \frac {3 y^{2}-x^{2}}{2 x y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1166

\[ {}\ln \left (t \right ) y+\left (t -3\right ) y^{\prime } = 2 t \]

[_linear]

1167

\[ {}y+\left (-4+t \right ) t y^{\prime } = 0 \]
i.c.

[_separable]

1168

\[ {}\tan \left (t \right ) y+y^{\prime } = \sin \left (t \right ) \]
i.c.

[_linear]

1169

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1170

\[ {}2 t y+\left (-t^{2}+4\right ) y^{\prime } = 3 t^{2} \]
i.c.

[_linear]

1171

\[ {}y+\ln \left (t \right ) y^{\prime } = \cot \left (t \right ) \]

[_linear]

1172

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

1173

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

1174

\[ {}y^{\prime } = -\frac {4 t}{y} \]

[_separable]

1175

\[ {}y^{\prime } = 2 t y^{2} \]

[_separable]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1177

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]

[_separable]

1178

\[ {}y^{\prime } = t y \left (3-y\right ) \]

[_separable]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1183

\[ {}y^{\prime } = y \left (y-2\right ) \left (-1+y\right ) \]

[_quadrature]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1186

\[ {}y^{\prime } = -\frac {2 \arctan \left (y\right )}{1+y^{2}} \]

[_quadrature]

1187

\[ {}y^{\prime } = -k \left (-1+y\right )^{2} \]

[_quadrature]

1188

\[ {}y^{\prime } = y^{2} \left (y^{2}-1\right ) \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1191

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

1192

\[ {}y^{\prime } = \left (1-y\right )^{2} y^{2} \]

[_quadrature]

1193

\[ {}3+2 x +\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

1195

\[ {}2+3 x^{2}-2 x y+\left (3-x^{2}+6 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1196

\[ {}2 y+2 x y^{2}+\left (2 x +2 x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1197

\[ {}y^{\prime } = \frac {-a x -b y}{b x +c y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1199

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left (2 \cos \left (x \right )+{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

1201

\[ {}2 x -2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+{\mathrm e}^{x y} \cos \left (2 x \right ) y+\left (-3+{\mathrm e}^{x y} x \cos \left (2 x \right )\right ) y^{\prime } = 0 \]

[_exact]

1202

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

1204

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1205

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1206

\[ {}-1+9 x^{2}+y+\left (x -4 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1207

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1208

\[ {}y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1209

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1210

\[ {}2 x y+3 x^{2} y+y^{3}+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational]

1211

\[ {}y^{\prime } = -1+{\mathrm e}^{2 x}+y \]

[[_linear, ‘class A‘]]

1212

\[ {}1+\left (-\sin \left (y\right )+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1213

\[ {}y+\left (-{\mathrm e}^{-2 y}+2 x y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1214

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1215

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {3}{y}+\left (\frac {3 x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

[_rational]

1216

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

1217

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1218

\[ {}y^{\prime } = \frac {x^{3}-2 y}{x} \]

[_linear]

1219

\[ {}y^{\prime } = \frac {\cos \left (x \right )+1}{2-\sin \left (y\right )} \]

[_separable]

1220

\[ {}y^{\prime } = \frac {2 x +y}{3-x +3 y^{2}} \]
i.c.

[_rational]

1221

\[ {}y^{\prime } = 3-6 x +y-2 x y \]

[_separable]

1222

\[ {}y^{\prime } = \frac {-1-2 x y-y^{2}}{x^{2}+2 x y} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1223

\[ {}x y+x y^{\prime } = 1-y \]
i.c.

[_linear]

1224

\[ {}y^{\prime } = \frac {4 x^{3}+1}{y \left (2+3 y\right )} \]

[_separable]

1225

\[ {}x y^{\prime }+2 y = \frac {\sin \left (x \right )}{x} \]
i.c.

[_linear]

1226

\[ {}y^{\prime } = \frac {-1-2 x y}{x^{2}+2 y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1227

\[ {}\frac {-x^{2}+x +1}{x^{2}}+\frac {y y^{\prime }}{-2+y} = 0 \]

[_separable]

1228

\[ {}x^{2}+y+\left ({\mathrm e}^{y}+x \right ) y^{\prime } = 0 \]

[_exact]

1229

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{x}} \]

[_linear]

1230

\[ {}y^{\prime } = 1+2 x +y^{2}+2 x y^{2} \]

[_separable]

1231

\[ {}x +y+\left (x +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1232

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime } = y-y \,{\mathrm e}^{x} \]

[_separable]

1233

\[ {}y^{\prime } = \frac {-{\mathrm e}^{2 y} \cos \left (x \right )+\cos \left (y\right ) {\mathrm e}^{-x}}{2 \,{\mathrm e}^{2 y} \sin \left (x \right )-\sin \left (y\right ) {\mathrm e}^{-x}} \]

[NONE]

1234

\[ {}y^{\prime } = {\mathrm e}^{2 x}+3 y \]

[[_linear, ‘class A‘]]

1235

\[ {}2 y+y^{\prime } = {\mathrm e}^{-x^{2}-2 x} \]

[[_linear, ‘class A‘]]

1236

\[ {}y^{\prime } = \frac {3 x^{2}-2 y-y^{3}}{2 x +3 x y^{2}} \]

[_rational]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

1238

\[ {}\frac {-4+6 x y+2 y^{2}}{3 x^{2}+4 x y+3 y^{2}}+y^{\prime } = 0 \]

[_rational]

1239

\[ {}y^{\prime } = \frac {x^{2}-1}{1+y^{2}} \]
i.c.

[_separable]

1240

\[ {}\left (t +1\right ) y+t y^{\prime } = {\mathrm e}^{2 t} \]

[_linear]

1241

\[ {}2 \cos \left (x \right ) \sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \sin \left (x \right )^{2} y^{\prime } = 0 \]

[_separable]

1242

\[ {}\frac {2 x}{y}-\frac {y}{y^{2}+x^{2}}+\left (-\frac {x^{2}}{y^{2}}+\frac {x}{y^{2}+x^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1244

\[ {}y^{\prime } = \frac {x}{x^{2}+y+y^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1245

\[ {}3 t +2 y = -t y^{\prime } \]

[_linear]

1246

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1247

\[ {}2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1248

\[ {}y^{\prime } = \frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 x y} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1520

\[ {}x y^{\prime }+y = x^{2} \]

[_linear]

1521

\[ {}y^{\prime }+2 x y = x \]

[_separable]

1522

\[ {}2 y^{\prime }+x \left (y^{2}-1\right ) = 0 \]

[_separable]

1523

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1524

\[ {}y^{\prime } = -x \]

[_quadrature]

1525

\[ {}y^{\prime } = -x \sin \left (x \right ) \]

[_quadrature]

1526

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

1527

\[ {}y^{\prime } = -x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

1528

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

1529

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

1530

\[ {}y^{\prime } = \cos \left (x \right )-\tan \left (x \right ) y \]
i.c.

[_linear]

1531

\[ {}y^{\prime } = \frac {x^{2}-2 x^{2} y+2}{x^{3}} \]
i.c.

[_linear]

1532

\[ {}y^{\prime } = x \left (1+y^{2}\right ) \]
i.c.

[_separable]

1533

\[ {}y^{\prime } = -\frac {y \left (1+y\right )}{x} \]
i.c.

[_separable]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1535

\[ {}y^{\prime } = {| y|}+1 \]
i.c.

[_quadrature]

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

1538

\[ {}y^{\prime }+3 x^{2} y = 0 \]

[_separable]

1539

\[ {}x y^{\prime }+y \ln \left (x \right ) = 0 \]

[_separable]

1540

\[ {}x y^{\prime }+3 y = 0 \]

[_separable]

1541

\[ {}x^{2} y^{\prime }+y = 0 \]

[_separable]

1542

\[ {}y^{\prime }+\frac {\left (x +1\right ) y}{x} = 0 \]
i.c.

[_separable]

1543

\[ {}x y^{\prime }+\left (1+\frac {1}{\ln \left (x \right )}\right ) y = 0 \]
i.c.

[_separable]

1544

\[ {}x y^{\prime }+\left (1+x \cot \left (x \right )\right ) y = 0 \]
i.c.

[_separable]

1545

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 0 \]
i.c.

[_separable]

1546

\[ {}y^{\prime }+\frac {k y}{x} = 0 \]
i.c.

[_separable]

1547

\[ {}y^{\prime }+\tan \left (k x \right ) y = 0 \]
i.c.

[_separable]

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1549

\[ {}y^{\prime }+\left (\frac {1}{x}-1\right ) y = -\frac {2}{x} \]

[_linear]

1550

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

1551

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {{\mathrm e}^{-x^{2}}}{x^{2}+1} \]

[_linear]

1552

\[ {}y^{\prime }+\frac {y}{x} = \frac {7}{x^{2}}+3 \]

[_linear]

1553

\[ {}y^{\prime }+\frac {4 y}{x -1} = \frac {1}{\left (x -1\right )^{5}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{4}} \]

[_linear]

1554

\[ {}x y^{\prime }+\left (2 x^{2}+1\right ) y = x^{3} {\mathrm e}^{-x^{2}} \]

[_linear]

1555

\[ {}x y^{\prime }+2 y = \frac {2}{x^{2}}+1 \]

[_linear]

1556

\[ {}y^{\prime }+\tan \left (x \right ) y = \cos \left (x \right ) \]

[_linear]

1557

\[ {}2 y+\left (x +1\right ) y^{\prime } = \frac {\sin \left (x \right )}{x +1} \]

[_linear]

1558

\[ {}\left (-2+x \right ) \left (x -1\right ) y^{\prime }-\left (4 x -3\right ) y = \left (-2+x \right )^{3} \]

[_linear]

1559

\[ {}y^{\prime }+2 \sin \left (x \right ) \cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )^{2}} \]

[_linear]

1560

\[ {}x^{2} y^{\prime }+3 x y = {\mathrm e}^{x} \]

[_linear]

1561

\[ {}y^{\prime }+7 y = {\mathrm e}^{3 x} \]
i.c.

[[_linear, ‘class A‘]]

1562

\[ {}y^{\prime } \left (x^{2}+1\right )+4 x y = \frac {2}{x^{2}+1} \]
i.c.

[_linear]

1563

\[ {}x y^{\prime }+3 y = \frac {2}{x \left (x^{2}+1\right )} \]
i.c.

[_linear]

1564

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

1565

\[ {}y^{\prime }+\frac {y}{x} = \frac {2}{x^{2}}+1 \]
i.c.

[_linear]

1566

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1}{\left (x -1\right )^{3}}+\frac {\sin \left (x \right )}{\left (x -1\right )^{2}} \]
i.c.

[_linear]

1567

\[ {}x y^{\prime }+2 y = 8 x^{2} \]
i.c.

[_linear]

1568

\[ {}x y^{\prime }-2 y = -x^{2} \]
i.c.

[_linear]

1569

\[ {}y^{\prime }+2 x y = x \]
i.c.

[_separable]

1570

\[ {}\left (x -1\right ) y^{\prime }+3 y = \frac {1+\left (x -1\right ) \sec \left (x \right )^{2}}{\left (x -1\right )^{3}} \]
i.c.

[_linear]

1571

\[ {}\left (x +2\right ) y^{\prime }+4 y = \frac {2 x^{2}+1}{x \left (x +2\right )^{3}} \]
i.c.

[_linear]

1572

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y = x \left (x^{2}-1\right ) \]
i.c.

[_linear]

1573

\[ {}x y^{\prime }-2 y = -1 \]
i.c.

[_separable]

1574

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

[_quadrature]

1575

\[ {}{\mathrm e}^{y^{2}} \left (2 y y^{\prime }+\frac {2}{x}\right ) = \frac {1}{x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1576

\[ {}\frac {x y^{\prime }}{y}+2 \ln \left (y\right ) = 4 x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1577

\[ {}\frac {y^{\prime }}{\left (1+y\right )^{2}}-\frac {1}{x \left (1+y\right )} = -\frac {3}{x^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

1578

\[ {}y^{\prime } = \frac {3 x^{2}+2 x +1}{-2+y} \]

[_separable]

1579

\[ {}\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

1580

\[ {}x y^{\prime }+y^{2}+y = 0 \]

[_separable]

1581

\[ {}\left (3 y^{3}+3 y \cos \left (y\right )+1\right ) y^{\prime }+\frac {\left (2 x +1\right ) y}{x^{2}+1} = 0 \]

[_separable]

1583

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

1584

\[ {}y^{\prime } \left (x^{2}+1\right )+x y = 0 \]

[_separable]

1585

\[ {}y^{\prime } = \left (x -1\right ) \left (y-1\right ) \left (-2+y\right ) \]

[_separable]

1586

\[ {}\left (y-1\right )^{2} y^{\prime } = 2 x +3 \]

[_separable]

1587

\[ {}y^{\prime } = \frac {x^{2}+3 x +2}{-2+y} \]
i.c.

[_separable]

1588

\[ {}y^{\prime }+x \left (y^{2}+y\right ) = 0 \]
i.c.

[_separable]

1589

\[ {}\left (3 y^{2}+4 y\right ) y^{\prime }+2 x +\cos \left (x \right ) = 0 \]
i.c.

[_separable]

1590

\[ {}y^{\prime }+\frac {\left (1+y\right ) \left (y-1\right ) \left (-2+y\right )}{x +1} = 0 \]
i.c.

[_separable]

1591

\[ {}y^{\prime }+2 x \left (1+y\right ) = 0 \]
i.c.

[_separable]

1592

\[ {}y^{\prime } = 2 x y \left (1+y^{2}\right ) \]
i.c.

[_separable]

1593

\[ {}y^{\prime } \left (x^{2}+2\right ) = 4 x \left (y^{2}+2 y+1\right ) \]

[_separable]

1594

\[ {}y^{\prime } = -2 x \left (y^{3}-3 y+2\right ) \]
i.c.

[_separable]

1595

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1597

\[ {}x +y y^{\prime } = 0 \]
i.c.

[_separable]

1598

\[ {}y^{\prime }+x^{2} \left (1+y\right ) \left (-2+y\right )^{2} = 0 \]

[_separable]

1599

\[ {}\left (x +1\right ) \left (-2+x \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

1600

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1602

\[ {}y^{\prime } = \frac {\cos \left (x \right )}{\sin \left (y\right )} \]
i.c.

[_separable]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1604

\[ {}y^{\prime }+y = \frac {2 x \,{\mathrm e}^{-x}}{1+y \,{\mathrm e}^{x}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

1605

\[ {}x y^{\prime }-2 y = \frac {x^{6}}{y+x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1606

\[ {}y^{\prime }-y = \frac {\left (x +1\right ) {\mathrm e}^{4 x}}{\left (y+{\mathrm e}^{x}\right )^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1607

\[ {}y^{\prime }-2 y = \frac {x \,{\mathrm e}^{2 x}}{1-y \,{\mathrm e}^{-2 x}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1613

\[ {}y^{\prime } = 2 x y \]

[_separable]

1617

\[ {}y^{\prime } = x \left (y^{2}-1\right )^{{2}/{3}} \]

[_separable]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

[_separable]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1622

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]
i.c.

[_separable]

1623

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]
i.c.

[_separable]

1624

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]
i.c.

[_separable]

1636

\[ {}y^{\prime }-x y = x y^{{3}/{2}} \]
i.c.

[_separable]

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]
i.c.

[_quadrature]

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

[_linear]

1643

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1647

\[ {}x y y^{\prime } = x^{2}+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1649

\[ {}y^{\prime } = \frac {x y+y^{2}}{x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1650

\[ {}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1656

\[ {}\left (-y+x y^{\prime }\right ) \left (\ln \left (y\right )-\ln \left (x \right )\right ) = x \]

[[_homogeneous, ‘class A‘]]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1658

\[ {}y^{\prime } = \frac {x +2 y}{2 x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1669

\[ {}3 x y^{2} y^{\prime } = y^{3}+x \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1675

\[ {}2 x \left (y+2 \sqrt {x}\right ) y^{\prime } = \left (y+\sqrt {x}\right )^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1676

\[ {}\left (y+{\mathrm e}^{x^{2}}\right ) y^{\prime } = 2 x \left (y^{2}+y \,{\mathrm e}^{x^{2}}+{\mathrm e}^{2 x^{2}}\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1677

\[ {}y^{\prime }+\frac {2 y}{x} = \frac {3 y^{2} x^{2}+6 x y+2}{x^{2} \left (2 x y+3\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1678

\[ {}y^{\prime }+\frac {3 y}{x} = \frac {3 x^{4} y^{2}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1680

\[ {}6 y^{2} x^{2}+4 x^{3} y y^{\prime } = 0 \]

[_separable]

1682

\[ {}14 x^{2} y^{3}+21 x^{2} y^{2} y^{\prime } = 0 \]

[_quadrature]

1683

\[ {}2 x -2 y^{2}+\left (12 y^{2}-4 x y\right ) y^{\prime } = 0 \]

[_exact, _rational]

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

[_quadrature]

1686

\[ {}-2 \sin \left (x \right ) y^{2}+3 y^{3}-2 x +\left (4 y \cos \left (x \right )+9 x y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1688

\[ {}3 x^{2}+2 x y+4 y^{2}+\left (x^{2}+8 x y+18 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1690

\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \]

[_separable]

1692

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1693

\[ {}{\mathrm e}^{x} \left (y^{2} x^{2}+2 x y^{2}\right )+6 x +\left (2 x^{2} y \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

1694

\[ {}x^{2} {\mathrm e}^{y+x^{2}} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{y+x^{2}}-12 y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1695

\[ {}{\mathrm e}^{x y} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{x y}+3 x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1697

\[ {}4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1698

\[ {}-4 y \cos \left (x \right )+4 \sin \left (x \right ) \cos \left (x \right )+\sec \left (x \right )^{2}+\left (4 y-4 \sin \left (x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1700

\[ {}\sin \left (x \right )-y \sin \left (x \right )-2 \cos \left (x \right )+\cos \left (x \right ) y^{\prime } = 0 \]
i.c.

[_linear]

1701

\[ {}\left (2 x -1\right ) \left (y-1\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1703

\[ {}{\mathrm e}^{x} \left (x^{4} y^{2}+4 x^{3} y^{2}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0 \]

[_exact, _Bernoulli]

1704

\[ {}x^{3} y^{4}+x +\left (x^{4} y^{3}+y\right ) y^{\prime } = 0 \]

[_exact, _rational]

1705

\[ {}3 x^{2}+2 y+\left (2 x +2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1706

\[ {}x^{3} y^{4}+2 x +\left (x^{4} y^{3}+3 y\right ) y^{\prime } = 0 \]

[_exact, _rational]

1707

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

1708

\[ {}y^{\prime }+\frac {2 y}{x} = -\frac {2 x y}{x^{2}+2 x^{2} y+1} \]
i.c.

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1709

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \]
i.c.

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1710

\[ {}y^{\prime }+2 x y = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \]
i.c.

[[_Abel, ‘2nd type‘, ‘class B‘]]

1711

\[ {}y+\left (2 x +\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1712

\[ {}x^{2} y^{\prime }-y^{2} = 0 \]

[_separable]

1713

\[ {}y-x y^{\prime } = 0 \]

[_separable]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

[_separable]

1715

\[ {}2 y^{3}+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

1716

\[ {}5 x y+2 y+5+2 x y^{\prime } = 0 \]

[_linear]

1717

\[ {}x y+x +2 y+1+\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1719

\[ {}6 x y^{2}+2 y+\left (12 x^{2} y+6 x +3\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1720

\[ {}y^{2}+\left (x y^{2}+6 x y+\frac {1}{y}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1721

\[ {}12 x^{3} y+24 y^{2} x^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1722

\[ {}x^{2} y+4 x y+2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

[_separable]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

[_separable]

1724

\[ {}\cos \left (x \right ) \cos \left (y\right )+\left (\sin \left (x \right ) \cos \left (y\right )-\sin \left (x \right ) \sin \left (y\right )+y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1725

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}-2 y^{2} x^{2}-2 x y^{3}\right ) y^{\prime } = 0 \]

[_rational]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

1727

\[ {}a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0 \]

[_separable]

1729

\[ {}2 y+3 \left (x^{2}+x^{2} y^{3}\right ) y^{\prime } = 0 \]

[_separable]

1730

\[ {}a \cos \left (x \right ) y-\sin \left (x \right ) y^{2}+\left (b \cos \left (x \right ) y-x \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

[_linear]

1731

\[ {}x^{4} y^{4}+x^{5} y^{3} y^{\prime } = 0 \]

[_separable]

1732

\[ {}y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

1733

\[ {}x^{4} y^{3}+y+\left (x^{5} y^{2}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1734

\[ {}3 x y+2 y^{2}+y+\left (x^{2}+2 x y+x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1735

\[ {}12 x y+6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1736

\[ {}3 y^{2} x^{2}+2 y+2 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

[_quadrature]

1793

\[ {}y^{\prime }+y^{2}-3 y+2 = 0 \]

[_quadrature]

1794

\[ {}y^{\prime }+y^{2}+5 y-6 = 0 \]

[_quadrature]

1795

\[ {}y^{\prime }+y^{2}+8 y+7 = 0 \]

[_quadrature]

1796

\[ {}y^{\prime }+y^{2}+14 y+50 = 0 \]

[_quadrature]

1797

\[ {}6 y^{\prime }+6 y^{2}-y-1 = 0 \]

[_quadrature]

1798

\[ {}36 y^{\prime }+36 y^{2}-12 y+1 = 0 \]

[_quadrature]

1804

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )-7 x y+7 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2299

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2300

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2301

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

2302

\[ {}y^{\prime }+y = t \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

2303

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

2304

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2305

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2306

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2307

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

[_separable]

2308

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2309

\[ {}t y+y^{\prime } = t +1 \]
i.c.

[_linear]

2310

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2311

\[ {}-2 t y+y^{\prime } = 1 \]
i.c.

[_linear]

2312

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

2313

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2318

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2319

\[ {}y^{\prime } = \left (t +1\right ) \left (y+1\right ) \]

[_separable]

2320

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2322

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2323

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2324

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2325

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2326

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2327

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2328

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2329

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2331

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2333

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2334

\[ {}{\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2337

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2338

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

[_exact]

2339

\[ {}1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

[_exact]

2340

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

2341

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2342

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2343

\[ {}2 t \cos \left (y\right )+3 t^{2} y+\left (t^{3}-t^{2} \sin \left (y\right )-y\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2344

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2345

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2346

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2360

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2361

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2472

\[ {}\cos \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2473

\[ {}\sqrt {t}\, \sin \left (t \right ) y+y^{\prime } = 0 \]

[_separable]

2474

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

[_linear]

2475

\[ {}y^{\prime }+y = t \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

2476

\[ {}t^{2} y+y^{\prime } = 1 \]

[_linear]

2477

\[ {}t^{2} y+y^{\prime } = t^{2} \]

[_separable]

2478

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

[_linear]

2479

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]
i.c.

[_separable]

2480

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2481

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]
i.c.

[_separable]

2482

\[ {}-2 t y+y^{\prime } = t \]
i.c.

[_separable]

2483

\[ {}t y+y^{\prime } = t +1 \]
i.c.

[_linear]

2484

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]
i.c.

[_linear]

2485

\[ {}-2 t y+y^{\prime } = 1 \]
i.c.

[_linear]

2486

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{{5}/{2}} \]

[_linear]

2487

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]
i.c.

[_separable]

2489

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

2490

\[ {}y^{\prime } = \left (t +1\right ) \left (y+1\right ) \]

[_separable]

2491

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2493

\[ {}\cos \left (y\right ) \sin \left (t \right ) y^{\prime } = \cos \left (t \right ) \sin \left (y\right ) \]

[_separable]

2494

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]
i.c.

[_separable]

2495

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]
i.c.

[_separable]

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]
i.c.

[_separable]

2497

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]
i.c.

[_separable]

2498

\[ {}\cos \left (y\right ) y^{\prime } = -\frac {t \sin \left (y\right )}{t^{2}+1} \]
i.c.

[_separable]

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2500

\[ {}3 t y^{\prime } = \cos \left (t \right ) y \]
i.c.

[_separable]

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2510

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

[_exact]

2511

\[ {}1+{\mathrm e}^{t y} \left (t y+1\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

[_exact]

2512

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

2513

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]
i.c.

[_separable]

2516

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2517

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2518

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]
i.c.

[_separable]

2535

\[ {}y^{\prime } = t \left (y+1\right ) \]
i.c.

[_separable]

2536

\[ {}y^{\prime } = t y^{a} \]
i.c.

[_separable]

2537

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]
i.c.

[_separable]

2809

\[ {}x^{\prime } = x \left (-x+1\right ) \]

[_quadrature]

2810

\[ {}x^{\prime } = -x \left (-x+1\right ) \]

[_quadrature]

2811

\[ {}x^{\prime } = x^{2} \]

[_quadrature]

2841

\[ {}y^{\prime } \left (x^{2}+1\right )+x y = 0 \]

[_separable]

2842

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2843

\[ {}1+y^{2}+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

2844

\[ {}x y^{\prime }+y = 0 \]

[_separable]

2845

\[ {}y^{\prime } = 2 x y \]

[_separable]

2846

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

[_separable]

2847

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

[_separable]

2848

\[ {}\left (x +1\right ) y^{\prime }-1+y = 0 \]

[_separable]

2849

\[ {}y^{\prime } \tan \left (x \right )-y = 1 \]

[_separable]

2850

\[ {}y+3+\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2851

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2852

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

[_quadrature]

2853

\[ {}x y^{\prime }+y = y^{2} \]

[_separable]

2856

\[ {}x y^{\prime }+y = x y \left (y^{\prime }-1\right ) \]

[_separable]

2857

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

[_separable]

2858

\[ {}y = x y+x^{2} y^{\prime } \]

[_separable]

2859

\[ {}\tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

2860

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

[_separable]

2861

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

2862

\[ {}x y^{\prime }+2 y = 0 \]
i.c.

[_separable]

2863

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2864

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]
i.c.

[_separable]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

2866

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]
i.c.

[_quadrature]

2867

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]
i.c.

[_separable]

2871

\[ {}x +y = x y^{\prime } \]

[_linear]

2872

\[ {}\left (x +y\right ) y^{\prime }+x = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2874

\[ {}y^{\prime } = \frac {2 x -y}{4 y+x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2878

\[ {}y^{2}+x^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2879

\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2880

\[ {}x y^{\prime }+y = 2 \sqrt {x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

2881

\[ {}x +y+y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2885

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2886

\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2888

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2890

\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2898

\[ {}x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2914

\[ {}x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2915

\[ {}3 x +y+\left (3 y+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2916

\[ {}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2917

\[ {}x \left (6 x y+5\right )+\left (2 x^{3}+3 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2918

\[ {}3 x^{2} y+x y^{2}+{\mathrm e}^{x}+\left (x^{3}+x^{2} y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2919

\[ {}2 x y-\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2920

\[ {}y \cos \left (x \right )-2 \sin \left (y\right ) = \left (2 x \cos \left (y\right )-\sin \left (x \right )\right ) y^{\prime } \]

[_exact]

2921

\[ {}\frac {2 x y-1}{y}+\frac {\left (3 y+x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2922

\[ {}y \,{\mathrm e}^{x}-2 x +{\mathrm e}^{x} y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

2923

\[ {}3 y \sin \left (x \right )-\cos \left (y\right )+\left (x \sin \left (y\right )-3 \cos \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

2925

\[ {}\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime } = 0 \]

[_separable]

2926

\[ {}\frac {x y+1}{y}+\frac {\left (2 y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2927

\[ {}\frac {y \left (2+x^{3} y\right )}{x^{3}} = \frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2928

\[ {}y^{2} \csc \left (x \right )^{2}+6 x y-2 = \left (2 y \cot \left (x \right )-3 x^{2}\right ) y^{\prime } \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

2929

\[ {}\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}} = \left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2930

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2931

\[ {}2 y \sin \left (x y\right )+\left (2 x \sin \left (x y\right )+y^{3}\right ) y^{\prime } = 0 \]

[_exact]

2932

\[ {}\frac {x \cos \left (\frac {x}{y}\right )}{y}+\sin \left (\frac {x}{y}\right )+\cos \left (x \right )-\frac {x^{2} \cos \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_exact]

2933

\[ {}y \,{\mathrm e}^{x y}+2 x y+\left (x \,{\mathrm e}^{x y}+x^{2}\right ) y^{\prime } = 0 \]

[_exact]

2934

\[ {}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2935

\[ {}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

2936

\[ {}\frac {2 x^{2}}{y^{2}+x^{2}}+\ln \left (y^{2}+x^{2}\right )+\frac {2 x y y^{\prime }}{y^{2}+x^{2}} = 0 \]

[_exact]

2937

\[ {}x y^{\prime }+\ln \left (x \right )-y = 0 \]

[_linear]

2938

\[ {}x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2939

\[ {}\left (x -2 x y\right ) y^{\prime }+2 y = 0 \]

[_separable]

2941

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2942

\[ {}\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2943

\[ {}y \left (y-x^{2}\right )+x^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2944

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2946

\[ {}2 x y+\left (y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2947

\[ {}y = x \left (x^{2} y-1\right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2948

\[ {}{\mathrm e}^{x} y^{\prime } = 2 x y^{2}+y \,{\mathrm e}^{x} \]

[_Bernoulli]

2949

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \]

[_rational]

2950

\[ {}\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2951

\[ {}2 x^{2} y y^{\prime }+x^{4} {\mathrm e}^{x}-2 x y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2952

\[ {}y \left (1-x^{4} y^{2}\right )+x y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2953

\[ {}y \left (x^{2}-1\right )+x \left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2954

\[ {}y^{2} x^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2955

\[ {}\left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x \]
i.c.

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2958

\[ {}x y^{\prime }+2 y = x^{2} \]

[_linear]

2959

\[ {}y^{\prime }-x y = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_linear]

2960

\[ {}y^{\prime }+2 x y = 2 x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2961

\[ {}y^{\prime } = y+3 \,{\mathrm e}^{x} x^{2} \]

[[_linear, ‘class A‘]]

2962

\[ {}x^{\prime }+x = {\mathrm e}^{-y} \]

[[_linear, ‘class A‘]]

2963

\[ {}y x^{\prime }+\left (1+y \right ) x = {\mathrm e}^{y} \]

[_linear]

2964

\[ {}y+\left (2 x -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2965

\[ {}x y^{\prime }-2 x^{4}-2 y = 0 \]

[_linear]

2966

\[ {}1 = \left ({\mathrm e}^{y}+x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

2967

\[ {}y^{2} x^{\prime }+\left (y^{2}+2 y \right ) x = 1 \]

[_linear]

2968

\[ {}x y^{\prime } = 5 y+x +1 \]

[_linear]

2969

\[ {}x^{2} y^{\prime }+y-2 x y-2 x^{2} = 0 \]

[_linear]

2970

\[ {}\left (x +1\right ) y^{\prime }+2 y = \frac {{\mathrm e}^{x}}{x +1} \]

[_linear]

2971

\[ {}\cos \left (y\right )^{2}+\left (x -\tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2972

\[ {}2 y = \left (y^{4}+x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

2973

\[ {}\cos \left (\theta \right ) r^{\prime } = 2+2 r \sin \left (\theta \right ) \]

[_linear]

2974

\[ {}\sin \left (\theta \right ) r^{\prime }+1+r \tan \left (\theta \right ) = \cos \left (\theta \right ) \]

[_linear]

2975

\[ {}y x^{\prime } = 2 y \,{\mathrm e}^{3 y}+x \left (3 y +2\right ) \]

[_linear]

2976

\[ {}y^{2}+1+\left (2 x y-y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2977

\[ {}y^{\prime }+y \cot \left (x \right )-\sec \left (x \right ) = 0 \]

[_linear]

2978

\[ {}y+y^{3}+4 \left (-1+x y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2979

\[ {}2 y-x y-3+x y^{\prime } = 0 \]
i.c.

[_linear]

2980

\[ {}y+2 \left (x -2 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

2981

\[ {}\left (x^{2}-1\right ) y^{\prime }+\left (x^{2}-1\right )^{2}+4 y = 0 \]
i.c.

[_linear]

2982

\[ {}3 y^{2} y^{\prime }-x y^{3} = {\mathrm e}^{\frac {x^{2}}{2}} \cos \left (x \right ) \]

[_Bernoulli]

2983

\[ {}y^{3} y^{\prime }+x y^{4} = x \,{\mathrm e}^{-x^{2}} \]

[_Bernoulli]

2984

\[ {}\cosh \left (y\right ) y^{\prime }+\sinh \left (y\right )-{\mathrm e}^{-x} = 0 \]

[‘y=_G(x,y’)‘]

2985

\[ {}\sin \left (\theta \right ) \theta ^{\prime }+\cos \left (\theta \right )-t \,{\mathrm e}^{-t} = 0 \]

[‘y=_G(x,y’)‘]

2986

\[ {}x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2988

\[ {}t x^{\prime }+x \left (1-x^{2} t^{4}\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2989

\[ {}x^{2} y^{\prime }+y^{2} = x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2990

\[ {}\csc \left (y\right ) \cot \left (y\right ) y^{\prime } = \csc \left (y\right )+{\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

2991

\[ {}y^{\prime }-x y = \frac {x}{y} \]

[_separable]

2992

\[ {}x y^{\prime }+y = y^{2} x^{2} \cos \left (x \right ) \]

[_Bernoulli]

2993

\[ {}r^{\prime }+\left (r-\frac {1}{r}\right ) \theta = 0 \]

[_separable]

2995

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

2996

\[ {}\cos \left (y\right ) y^{\prime }+\left (\sin \left (y\right )-1\right ) \cos \left (x \right ) = 0 \]

[_separable]

2997

\[ {}\left (x \tan \left (y\right )^{2}+x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \]

[‘y=_G(x,y’)‘]

3004

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

3006

\[ {}2 x +y-\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3007

\[ {}x \ln \left (x \right ) y^{\prime }+y-x = 0 \]

[_linear]

3009

\[ {}2 x y-2 x y^{3}+x^{3}+\left (x^{2}+y^{2}-3 y^{2} x^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

3010

\[ {}2 \,{\mathrm e}^{x}-t^{2}+t \,{\mathrm e}^{x} x^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

3011

\[ {}2 y+6 = x y y^{\prime } \]

[_separable]

3013

\[ {}y \sin \left (x \right )-2 \cos \left (y\right )+\tan \left (x \right )-\left (\cos \left (x \right )-2 x \sin \left (y\right )+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

3014

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3015

\[ {}y-x y^{\prime } = 2 y^{\prime }+2 y^{2} \]

[_separable]

3016

\[ {}\tan \left (y\right ) = \left (3 x +4\right ) y^{\prime } \]

[_separable]

3018

\[ {}2 x y+y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3019

\[ {}y+\left (-2 y+3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3020

\[ {}r^{\prime } = r \cot \left (\theta \right ) \]

[_separable]

3022

\[ {}2 x^{3}-y^{3}-3 x +3 x y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

3024

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

3026

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

3027

\[ {}y^{\prime }+x +y \cot \left (x \right ) = 0 \]

[_linear]

3028

\[ {}-6+3 x = x y y^{\prime } \]

[_separable]

3029

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

3030

\[ {}2 x y^{\prime }-y+\frac {x^{2}}{y^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3031

\[ {}x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

[_separable]

3033

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right ) = \left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } \]

[_separable]

3034

\[ {}\sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \]

[‘y=_G(x,y’)‘]

3035

\[ {}2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 x y-y^{2}\right ) y^{\prime } = 0 \]

[_exact]

3036

\[ {}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3041

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3042

\[ {}x \,{\mathrm e}^{-y^{2}}+y y^{\prime } = 0 \]
i.c.

[_separable]

3043

\[ {}\frac {2 y^{3}-2 x^{2} y^{3}-x +x y^{2} \ln \left (y\right )}{x y^{2}}+\frac {\left (2 y^{3} \ln \left (x \right )-x^{2} y^{3}+2 x +x y^{2}\right ) y^{\prime }}{y^{3}} = 0 \]
i.c.

[_exact]

3046

\[ {}x y^{\prime } = x^{4}+4 y \]
i.c.

[_linear]

3047

\[ {}x y^{\prime }+y = x^{3} y^{6} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3049

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

3050

\[ {}3 x y+\left (3 x^{2}+y^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3051

\[ {}2 y+y^{\prime } = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

3052

\[ {}4 x y^{2}+y^{\prime } \left (x^{2}+1\right ) = 0 \]
i.c.

[_separable]

3055

\[ {}2 x y-2 y+1+x \left (x -1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

3057

\[ {}2 y^{\prime } \left (x^{2}+1\right ) = \left (2 y^{2}-1\right ) x y \]
i.c.

[_separable]

3058

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

3169

\[ {}y^{\prime }+P \left (x \right ) y = Q \left (x \right ) \]

[_linear]

3285

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

[_separable]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

[_separable]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

[_quadrature]

3294

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (y^{2}+x^{2}\right ) = 0 \]

[_quadrature]

3334

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

[_separable]

3403

\[ {}y^{\prime } = 2 \]

[_quadrature]

3404

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

[_quadrature]

3405

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

[_quadrature]

3406

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

3407

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

3408

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

3409

\[ {}y^{\prime } = x y \]

[_separable]

3410

\[ {}y^{\prime } = y^{2} x^{2} \]

[_separable]

3411

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

3412

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

3413

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

3414

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

3415

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

[_quadrature]

3416

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1 \]

[_quadrature]

3417

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

3418

\[ {}y^{\prime } = t^{2}+3 \]

[_quadrature]

3419

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

[_quadrature]

3420

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

[_quadrature]

3421

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

[_quadrature]

3422

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

[_quadrature]

3423

\[ {}y^{\prime } = \ln \left (t \right ) \]

[_quadrature]

3424

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

[_quadrature]

3425

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

3426

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

3427

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

3428

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]
i.c.

[_quadrature]

3429

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

3430

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]
i.c.

[_quadrature]

3431

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

3432

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

3433

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

3434

\[ {}y^{\prime } = -1+y \]

[_quadrature]

3435

\[ {}y^{\prime } = 1-y \]

[_quadrature]

3436

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3437

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

3438

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

3439

\[ {}y^{\prime } = -y \]

[_quadrature]

3440

\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \]

[[_linear, ‘class A‘]]

3441

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

3442

\[ {}y^{\prime } = t -y \]

[[_linear, ‘class A‘]]

3443

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

3444

\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right ) \]

[_linear]

3445

\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \]

[_linear]

3446

\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right )^{3} \]

[_linear]

3447

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

3448

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

3449

\[ {}t y^{\prime } = y+t^{3} \]
i.c.

[_linear]

3450

\[ {}y^{\prime } = -\tan \left (t \right ) y+\sec \left (t \right ) \]
i.c.

[_linear]

3451

\[ {}y^{\prime } = \frac {2 y}{t +1} \]
i.c.

[_separable]

3452

\[ {}t y^{\prime } = -y+t^{3} \]
i.c.

[_linear]

3453

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]
i.c.

[_separable]

3454

\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \]
i.c.

[_linear]

3455

\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \]
i.c.

[_linear]

3456

\[ {}y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \]
i.c.

[_linear]

3457

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3458

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

3459

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3460

\[ {}y \left (2 y^{2} x^{2}+1\right ) y^{\prime }+x \left (y^{4}+1\right ) = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3461

\[ {}2 x y^{\prime }+3 x +y = 0 \]

[_linear]

3462

\[ {}\left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

3463

\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 x y = \left (-x^{2}+1\right )^{{3}/{2}} \]

[_linear]

3464

\[ {}y^{\prime }-y \cot \left (x \right )+\frac {1}{\sin \left (x \right )} = 0 \]

[_linear]

3465

\[ {}\left (x +y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

3466

\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{x y} \]

[_rational, _Bernoulli]

3468

\[ {}y^{\prime } = \frac {1}{x +2 y+1} \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3470

\[ {}y^{\prime } = \tan \left (x \right ) \cos \left (y\right ) \left (\cos \left (y\right )+\sin \left (y\right )\right ) \]

[_separable]

3471

\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 y^{2} x^{2} \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3472

\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \]

[_linear]

3473

\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \]

[_separable]

3474

\[ {}y^{\prime }-\frac {y}{x} = 1 \]
i.c.

[_linear]

3475

\[ {}y^{\prime }-\tan \left (x \right ) y = 1 \]
i.c.

[_linear]

3478

\[ {}y^{\prime } \sin \left (x \right )+2 y \cos \left (x \right ) = 1 \]
i.c.

[_linear]

3480

\[ {}x y^{\prime }+y-\frac {y^{2}}{x^{{3}/{2}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3481

\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3482

\[ {}\left (2 \sin \left (y\right )-x \right ) y^{\prime } = \tan \left (y\right ) \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3515

\[ {}y^{\prime } = 2 x y \]

[_separable]

3516

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3517

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3518

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3519

\[ {}y-\left (-2+x \right ) y^{\prime } = 0 \]

[_separable]

3520

\[ {}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3} \]

[_separable]

3521

\[ {}y-x y^{\prime } = 3-2 x^{2} y^{\prime } \]

[_separable]

3522

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3523

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \]

[_separable]

3524

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+32 \]

[_linear]

3525

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3526

\[ {}y^{\prime } \left (x^{2}+1\right )+y^{2} = -1 \]
i.c.

[_separable]

3527

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3528

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3529

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]

[_separable]

3530

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

3531

\[ {}x^{2} y^{\prime }-4 x y = x^{7} \sin \left (x \right ) \]

[_linear]

3532

\[ {}y^{\prime }+2 x y = 2 x^{3} \]

[_linear]

3533

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = 4 x \]

[_linear]

3534

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

3535

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

[_linear]

3536

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

[_linear]

3537

\[ {}y^{\prime }-\tan \left (x \right ) y = 8 \sin \left (x \right )^{3} \]

[_linear]

3538

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

3539

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3540

\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \]

[_linear]

3541

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

3542

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

3543

\[ {}y^{\prime }+\frac {m}{x} = \ln \left (x \right ) \]

[_quadrature]

3544

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3546

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3550

\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3555

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3561

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3562

\[ {}y^{\prime } = \frac {y}{2 x} \]

[_separable]

3577

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}-\sin \left (y\right )}{x \cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

3578

\[ {}y^{\prime } = \frac {1-y^{2}}{2 x y+2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

3579

\[ {}y^{\prime } = \frac {\left (1-y \,{\mathrm e}^{x y}\right ) {\mathrm e}^{-x y}}{x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3580

\[ {}y^{\prime } = \frac {x^{2} \left (1-y^{2}\right )+y \,{\mathrm e}^{\frac {y}{x}}}{x \left ({\mathrm e}^{\frac {y}{x}}+2 x^{2} y\right )} \]

[‘y=_G(x,y’)‘]

3581

\[ {}y^{\prime } = \frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \]
i.c.

[_Bernoulli]

3582

\[ {}y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

3583

\[ {}y^{\prime } = \frac {1}{x^{{2}/{3}}} \]

[_quadrature]

3586

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]
i.c.

[_quadrature]

3593

\[ {}y^{\prime } = 2 x y \]

[_separable]

3594

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

3595

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

3596

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3597

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

3598

\[ {}y^{\prime } = \frac {2 x \left (y-1\right )}{x^{2}+3} \]

[_separable]

3599

\[ {}y-x y^{\prime } = 3-2 x^{2} y^{\prime } \]

[_separable]

3600

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

3601

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \]

[_separable]

3602

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

3603

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3604

\[ {}y^{\prime } \left (x^{2}+1\right )+y^{2} = -1 \]
i.c.

[_separable]

3605

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

3606

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3607

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

3608

\[ {}y^{\prime } = \frac {2 \sqrt {y-1}}{3} \]
i.c.

[_quadrature]

3609

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

3620

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

3626

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right ) \]
i.c.

[_linear]

3627

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]
i.c.

[_linear]

3628

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]
i.c.

[[_linear, ‘class A‘]]

3632

\[ {}y^{\prime }+\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

3633

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

3634

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

3635

\[ {}-y+x y^{\prime } = x^{2} \ln \left (x \right ) \]

[_linear]

3637

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3639

\[ {}\sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3642

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

3643

\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3648

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3652

\[ {}y^{\prime } = \frac {2 x -y}{4 y+x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3655

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3656

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3657

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

3661

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3667

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3668

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]

[_Bernoulli]

3669

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

3675

\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \]

[[_homogeneous, ‘class G‘]]

3679

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3680

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3682

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

3683

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}} \]

[_separable]

3685

\[ {}\cos \left (x y\right )-x y \sin \left (x y\right )-x^{2} \sin \left (x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact]

3686

\[ {}y+3 x^{2}+x y^{\prime } = 0 \]

[_linear]

3687

\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3688

\[ {}2 x y+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

3689

\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

3690

\[ {}4 \,{\mathrm e}^{2 x}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3691

\[ {}\frac {1}{x}-\frac {y}{y^{2}+x^{2}}+\frac {x y^{\prime }}{y^{2}+x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

3692

\[ {}y \cos \left (x y\right )-\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3693

\[ {}2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime } = 0 \]

[_exact, _Bernoulli]

3694

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

3695

\[ {}\sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

4077

\[ {}5 x y+4 y^{2}+1+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4078

\[ {}2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4080

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4081

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4084

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4091

\[ {}y^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

4092

\[ {}y^{\prime } = 1-x^{5}+\sqrt {x} \]

[_quadrature]

4093

\[ {}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0 \]

[_linear]

4094

\[ {}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0 \]

[_separable]

4095

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

4097

\[ {}y^{\prime } = \frac {y-2 x}{x} \]

[_linear]

4098

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4099

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

4100

\[ {}y^{\prime }+y = x^{2}+2 \]

[[_linear, ‘class A‘]]

4101

\[ {}y^{\prime }-\tan \left (x \right ) y = x \]
i.c.

[_linear]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4104

\[ {}x y^{\prime } = x +y \]
i.c.

[_linear]

4106

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[_quadrature]

4107

\[ {}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

4108

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

4109

\[ {}x y^{\prime }+2 y = \left (2+3 x \right ) {\mathrm e}^{3 x} \]
i.c.

[_linear]

4110

\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]
i.c.

[_separable]

4115

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

[_quadrature]

4116

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \]
i.c.

[_linear]

4117

\[ {}\left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \]
i.c.

[_exact, _rational]

4190

\[ {}y y^{\prime } = x \]

[_separable]

4191

\[ {}y^{\prime }-y = x^{3} \]

[[_linear, ‘class A‘]]

4192

\[ {}y^{\prime }+y \cot \left (x \right ) = x \]

[_linear]

4193

\[ {}y^{\prime }+y \cot \left (x \right ) = \tan \left (x \right ) \]

[_linear]

4194

\[ {}y^{\prime }+\tan \left (x \right ) y = \cot \left (x \right ) \]

[_linear]

4195

\[ {}y^{\prime }+y \ln \left (x \right ) = x^{-x} \]

[_linear]

4196

\[ {}x y^{\prime }+y = x \]

[_linear]

4197

\[ {}-y+x y^{\prime } = x^{3} \]

[_linear]

4198

\[ {}x y^{\prime }+n y = x^{n} \]

[_linear]

4199

\[ {}x y^{\prime }-n y = x^{n} \]

[_linear]

4200

\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \]

[_linear]

4201

\[ {}\cot \left (x \right ) y^{\prime }+y = x \]

[_linear]

4202

\[ {}\cot \left (x \right ) y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

4203

\[ {}y^{\prime } \tan \left (x \right )+y = \cot \left (x \right ) \]

[_linear]

4204

\[ {}y^{\prime } \tan \left (x \right ) = y-\cos \left (x \right ) \]

[_linear]

4205

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

4206

\[ {}\cos \left (x \right ) y^{\prime }+y = \sin \left (2 x \right ) \]

[_linear]

4207

\[ {}y^{\prime }+y \sin \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

4208

\[ {}y^{\prime } \sin \left (x \right )+y = \sin \left (2 x \right ) \]

[_linear]

4209

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+y = 2 x \]

[_linear]

4210

\[ {}\sqrt {x^{2}+1}\, y^{\prime }-y = 2 \sqrt {x^{2}+1} \]

[_linear]

4211

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y = 0 \]

[_linear]

4212

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y = \sqrt {x +a}-\sqrt {x +b} \]

[_linear]

4213

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

[_separable]

4214

\[ {}y^{\prime } = 6 x y^{2} \]

[_separable]

4215

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4217

\[ {}y^{\prime } = x \sec \left (y\right ) \]

[_separable]

4218

\[ {}y^{\prime } = 3 \cos \left (y\right )^{2} \]

[_quadrature]

4219

\[ {}x y^{\prime } = y \]

[_separable]

4220

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

4221

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

[_separable]

4222

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

[_separable]

4223

\[ {}x^{2} y^{\prime }-y^{2} = 0 \]
i.c.

[_separable]

4224

\[ {}y^{\prime }+2 x y = 0 \]
i.c.

[_separable]

4225

\[ {}\cot \left (x \right ) y^{\prime } = y \]
i.c.

[_separable]

4226

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

4227

\[ {}y^{\prime }-2 x y = 2 x \]
i.c.

[_separable]

4228

\[ {}x y^{\prime } = x y+y \]
i.c.

[_separable]

4229

\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right ) \]
i.c.

[_quadrature]

4230

\[ {}x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right ) \]
i.c.

[_separable]

4231

\[ {}x y^{\prime } = 2 y \left (y-1\right ) \]
i.c.

[_separable]

4232

\[ {}2 x y^{\prime } = 1-y^{2} \]
i.c.

[_separable]

4233

\[ {}\left (1-x \right ) y^{\prime } = x y \]

[_separable]

4234

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

4235

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

[_separable]

4236

\[ {}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y} \]

[_separable]

4237

\[ {}y \,{\mathrm e}^{2 x} y^{\prime }+2 x = 0 \]
i.c.

[_separable]

4238

\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_separable]

4239

\[ {}\left (y-1+x \right ) y^{\prime } = x +1-y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4240

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4241

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4242

\[ {}x^{2} y^{\prime }-2 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4244

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4250

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4251

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

4252

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

4254

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

4255

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

4256

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

4257

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

4258

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

4259

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 y^{2} x^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4260

\[ {}1 = \frac {y}{1-y^{2} x^{2}}+\frac {x y^{\prime }}{1-y^{2} x^{2}} \]

[_exact, _rational, _Riccati]

4261

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4262

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

4263

\[ {}\left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4264

\[ {}\left (x -1-y^{2}\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4265

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

4266

\[ {}x y^{\prime } = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4267

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4269

\[ {}x y^{\prime }-3 y = x^{4} \]

[_linear]

4270

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

4271

\[ {}2 x y+y^{\prime } \left (x^{2}+1\right ) = \cot \left (x \right ) \]

[_linear]

4272

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

4273

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

4274

\[ {}2 y-x^{3} = x y^{\prime } \]

[_linear]

4275

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4279

\[ {}x^{2} y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

4280

\[ {}x y^{\prime }+y = x \cos \left (x \right ) \]

[_linear]

4281

\[ {}\left (x y-x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4282

\[ {}\left ({\mathrm e}^{x}-3 y^{2} x^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4283

\[ {}y+x^{2} = x y^{\prime } \]

[_linear]

4284

\[ {}x y^{\prime }+y = x^{2} \cos \left (x \right ) \]

[_linear]

4286

\[ {}\cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

4287

\[ {}y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

4288

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

4289

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

4290

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4291

\[ {}2 x y+y^{\prime } \left (x^{2}+1\right ) = 4 x^{3} \]

[_linear]

4292

\[ {}{\mathrm e}^{x} \sin \left (y\right )-y \sin \left (x y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )-x \sin \left (x y\right )\right ) y^{\prime } = 0 \]

[_exact]

4293

\[ {}\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 2 x y-{\mathrm e}^{y}-x \]

[_exact]

4294

\[ {}{\mathrm e}^{x} \left (x +1\right ) = \left (x \,{\mathrm e}^{x}-{\mathrm e}^{y} y\right ) y^{\prime } \]

[‘y=_G(x,y’)‘]

4295

\[ {}2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

4297

\[ {}\ln \left (x \right ) y^{\prime }+\frac {x +y}{x} = 0 \]

[_linear]

4298

\[ {}\cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \]
i.c.

[_exact]

4299

\[ {}y \sin \left (\frac {x}{y}\right )+x \cos \left (\frac {x}{y}\right )-1+\left (x \sin \left (\frac {x}{y}\right )-\frac {x^{2} \cos \left (\frac {x}{y}\right )}{y}\right ) y^{\prime } = 0 \]

[_exact]

4300

\[ {}\frac {x}{y^{2}+x^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{y^{2}+x^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

4301

\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \]

[_separable]

4305

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

4306

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]
i.c.

[_quadrature]

4308

\[ {}y^{\prime } = \frac {x^{3} {\mathrm e}^{x^{2}}}{y \ln \left (y\right )} \]

[_separable]

4312

\[ {}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

4317

\[ {}x y^{\prime } = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4318

\[ {}x y+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4323

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4326

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

4327

\[ {}2 x^{2}-x y^{2}-2 y+3-\left (x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4328

\[ {}x y^{2}+x -2 y+3+\left (x^{2} y-2 x -2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4329

\[ {}3 y \left (x^{2}-1\right )+\left (x^{3}+8 y-3 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4330

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4331

\[ {}2 x \left (3 x +y-y \,{\mathrm e}^{-x^{2}}\right )+\left (x^{2}+3 y^{2}+{\mathrm e}^{-x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

4332

\[ {}3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 x y-y \sin \left (2 x \right )\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

4334

\[ {}x^{2}-\sin \left (y\right )^{2}+x \sin \left (2 y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

4335

\[ {}y \left (2 x -y+2\right )+2 y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4336

\[ {}4 x y+3 y^{2}-x +x \left (x +2 y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4337

\[ {}y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4338

\[ {}x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

4339

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4340

\[ {}3 y^{2}+3 x^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime } = 0 \]

[_rational]

4341

\[ {}2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4342

\[ {}2+y^{2}+2 x +2 y y^{\prime } = 0 \]

[_rational, _Bernoulli]

4343

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

4344

\[ {}y \left (x +y\right )+\left (x +2 y-1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4345

\[ {}2 x \left (x^{2}-\sin \left (y\right )+1\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

4346

\[ {}x^{2}+y+y^{2}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4348

\[ {}y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4349

\[ {}y^{2}-\left (x y+x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4351

\[ {}2 y^{2} x^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4352

\[ {}y^{2}+\left (x y+\tan \left (x y\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

4353

\[ {}2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4361

\[ {}1-\left (y-2 x y\right ) y^{\prime } = 0 \]

[_separable]

4362

\[ {}1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4363

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _rational]

4364

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

4365

\[ {}y^{2}+\left (x y+y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

4366

\[ {}y = \left ({\mathrm e}^{y}+2 x y-2 x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4368

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

4373

\[ {}1+y+\left (x -y \left (1+y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4376

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4396

\[ {}x y^{2} \left (x y^{\prime }+y\right ) = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4398

\[ {}y^{\prime } = \frac {y+2}{x +1} \]

[_separable]

4400

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

4401

\[ {}2 \sqrt {x y}-y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4403

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

4404

\[ {}y-1-x y+x y^{\prime } = 0 \]

[_linear]

4406

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4408

\[ {}2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

4411

\[ {}{\mathrm e}^{x}+3 y^{2}+2 x y y^{\prime } = 0 \]

[_Bernoulli]

4412

\[ {}x y+2 x^{3} y+x^{2} y^{\prime } = 0 \]

[_separable]

4415

\[ {}y+3 x^{4} y^{2}+\left (x +2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

[_rational]

4417

\[ {}2 y \left (x \,{\mathrm e}^{x^{2}}+y \sin \left (x \right ) \cos \left (x \right )\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

4418

\[ {}\cos \left (y\right )+\sin \left (y\right ) \left (x -\sin \left (y\right ) \cos \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4419

\[ {}y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4421

\[ {}2 x^{3} y y^{\prime }+3 y^{2} x^{2}+7 = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

4422

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4424

\[ {}y^{4}+x y+\left (x y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4425

\[ {}x^{2}+3 \ln \left (y\right )-\frac {x y^{\prime }}{y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4427

\[ {}y+\left (x y-x -y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4428

\[ {}y+2 y^{3} y^{\prime } = \left (x +4 y \ln \left (y\right )\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries]]

4429

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

4430

\[ {}2 x^{{3}/{2}}+x^{2}+y^{2}+2 y \sqrt {x}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4431

\[ {}2 x +y \cos \left (x y\right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4437

\[ {}y \sin \left (x \right )+\cos \left (x \right )^{2}-\cos \left (x \right ) y^{\prime } = 0 \]

[_linear]

4440

\[ {}\left (\cos \left (x \right )+1\right ) y^{\prime }+\sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) = 0 \]

[_linear]

4441

\[ {}x +\sin \left (\frac {y}{x}\right )^{2} \left (y-x y^{\prime }\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

4442

\[ {}2 x y^{4} {\mathrm e}^{y}+2 x y^{3}+y+\left (x^{2} y^{4} {\mathrm e}^{y}-y^{2} x^{2}-3 x \right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

4443

\[ {}x y^{3}-1+x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4608

\[ {}y^{\prime } = a f \left (x \right ) \]

[_quadrature]

4609

\[ {}y^{\prime } = x +\sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

4610

\[ {}y^{\prime } = x^{2}+3 \cosh \left (x \right )+2 y \]

[[_linear, ‘class A‘]]

4611

\[ {}y^{\prime } = a +b x +c y \]

[[_linear, ‘class A‘]]

4612

\[ {}y^{\prime } = a \cos \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

4613

\[ {}y^{\prime } = a \sin \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

4614

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

[[_linear, ‘class A‘]]

4615

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]

[_linear]

4616

\[ {}y^{\prime } = x \left ({\mathrm e}^{-x^{2}}+a y\right ) \]

[_linear]

4617

\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

[_linear]

4618

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4619

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (x \right )+y \cos \left (x \right ) \]

[_linear]

4620

\[ {}y^{\prime } = {\mathrm e}^{\sin \left (x \right )}+y \cos \left (x \right ) \]

[_linear]

4621

\[ {}y^{\prime } = y \cot \left (x \right ) \]

[_separable]

4622

\[ {}y^{\prime } = 1-y \cot \left (x \right ) \]

[_linear]

4623

\[ {}y^{\prime } = x \csc \left (x \right )-y \cot \left (x \right ) \]

[_linear]

4624

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

4625

\[ {}y^{\prime } = \sec \left (x \right )-y \cot \left (x \right ) \]

[_linear]

4626

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )+y \cot \left (x \right ) \]

[_linear]

4627

\[ {}y^{\prime }+\csc \left (x \right )+2 y \cot \left (x \right ) = 0 \]

[_linear]

4629

\[ {}y^{\prime } = 2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \]

[_linear]

4630

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (\sin \left (x \right )^{3}+y\right ) \]

[_linear]

4631

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (1-\tan \left (x \right )^{2}+y\right ) \]

[_linear]

4632

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

4633

\[ {}y^{\prime }+\tan \left (x \right ) = \left (1-y\right ) \sec \left (x \right ) \]

[_linear]

4634

\[ {}y^{\prime } = \tan \left (x \right ) y \]

[_separable]

4635

\[ {}y^{\prime } = \cos \left (x \right )+\tan \left (x \right ) y \]

[_linear]

4636

\[ {}y^{\prime } = \cos \left (x \right )-\tan \left (x \right ) y \]

[_linear]

4637

\[ {}y^{\prime } = \sec \left (x \right )-\tan \left (x \right ) y \]

[_linear]

4638

\[ {}y^{\prime } = \sin \left (2 x \right )+\tan \left (x \right ) y \]

[_linear]

4639

\[ {}y^{\prime } = \sin \left (2 x \right )-\tan \left (x \right ) y \]

[_linear]

4640

\[ {}y^{\prime } = \sin \left (x \right )+2 \tan \left (x \right ) y \]

[_linear]

4642

\[ {}y^{\prime } = \csc \left (x \right )+3 \tan \left (x \right ) y \]

[_linear]

4643

\[ {}y^{\prime } = \left (a +\cos \left (\ln \left (x \right )\right )+\sin \left (\ln \left (x \right )\right )\right ) y \]

[_separable]

4644

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x}-y \tanh \left (x \right ) \]

[_linear]

4645

\[ {}y^{\prime } = f \left (x \right ) f^{\prime }\left (x \right )+f^{\prime }\left (x \right ) y \]

[_linear]

4646

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y \]

[_linear]

4662

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

4667

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4671

\[ {}y^{\prime } = x y \left (y+3\right ) \]

[_separable]

4675

\[ {}y^{\prime } = a x y^{2} \]

[_separable]

4676

\[ {}y^{\prime } = x^{n} \left (a +b y^{2}\right ) \]

[_separable]

4679

\[ {}y^{\prime } = \sin \left (x \right ) \left (2 \sec \left (x \right )^{2}-y\right ) \]

[_linear]

4681

\[ {}y^{\prime } = y \sec \left (x \right )+\left (\sin \left (x \right )-1\right )^{2} \]

[_linear]

4682

\[ {}y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right ) = 0 \]

[_separable]

4684

\[ {}y^{\prime } = \left (a +b y+c y^{2}\right ) f \left (x \right ) \]

[_separable]

4688

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4689

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

4690

\[ {}y^{\prime } = x y^{3} \]

[_separable]

4692

\[ {}y^{\prime } = \left (a +b x y\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _Abel]

4695

\[ {}y^{\prime }+y^{3} \sec \left (x \right ) \tan \left (x \right ) = 0 \]

[_separable]

4701

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

4705

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

4706

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

4708

\[ {}y^{\prime } = \sqrt {X Y} \]

[_quadrature]

4709

\[ {}y^{\prime } = \cos \left (y\right ) \cos \left (x \right )^{2} \]

[_separable]

4710

\[ {}y^{\prime } = \sec \left (x \right )^{2} \cot \left (y\right ) \cos \left (y\right ) \]

[_separable]

4713

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

4715

\[ {}y^{\prime }+\tan \left (x \right ) \sec \left (x \right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

4716

\[ {}y^{\prime } = \cot \left (x \right ) \cot \left (y\right ) \]

[_separable]

4717

\[ {}y^{\prime }+\cot \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4718

\[ {}y^{\prime } = \sin \left (x \right ) \left (\csc \left (y\right )-\cot \left (y\right )\right ) \]

[_separable]

4719

\[ {}y^{\prime } = \tan \left (x \right ) \cot \left (y\right ) \]

[_separable]

4720

\[ {}y^{\prime }+\tan \left (x \right ) \cot \left (y\right ) = 0 \]

[_separable]

4723

\[ {}y^{\prime } = \cos \left (x \right ) \sec \left (y\right )^{2} \]

[_separable]

4724

\[ {}y^{\prime } = \sec \left (x \right )^{2} \sec \left (y\right )^{3} \]

[_separable]

4725

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

4729

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

4732

\[ {}y^{\prime } = {\mathrm e}^{x} \left (a +b \,{\mathrm e}^{-y}\right ) \]

[_separable]

4733

\[ {}y \ln \left (x \right ) \ln \left (y\right )+y^{\prime } = 0 \]

[_separable]

4735

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

4737

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

4738

\[ {}y^{\prime } = \sec \left (x \right )^{2}+y \sec \left (x \right ) \operatorname {Csx} \left (x \right ) \]

[_linear]

4742

\[ {}x y^{\prime } = \sqrt {a^{2}-x^{2}} \]

[_quadrature]

4743

\[ {}x y^{\prime }+x +y = 0 \]

[_linear]

4744

\[ {}x y^{\prime }+x^{2}-y = 0 \]

[_linear]

4745

\[ {}x y^{\prime } = x^{3}-y \]

[_linear]

4746

\[ {}x y^{\prime } = 1+x^{3}+y \]

[_linear]

4747

\[ {}x y^{\prime } = x^{m}+y \]

[_linear]

4748

\[ {}x y^{\prime } = x \sin \left (x \right )-y \]

[_linear]

4749

\[ {}x y^{\prime } = x^{2} \sin \left (x \right )+y \]

[_linear]

4750

\[ {}x y^{\prime } = x^{n} \ln \left (x \right )-y \]

[_linear]

4751

\[ {}x y^{\prime } = \sin \left (x \right )-2 y \]

[_linear]

4752

\[ {}x y^{\prime } = a y \]

[_separable]

4753

\[ {}x y^{\prime } = 1+x +a y \]

[_linear]

4754

\[ {}x y^{\prime } = a x +b y \]

[_linear]

4755

\[ {}x y^{\prime } = x^{2} a +b y \]

[_linear]

4756

\[ {}x y^{\prime } = a +b \,x^{n}+c y \]

[_linear]

4757

\[ {}x y^{\prime }+2+\left (3-x \right ) y = 0 \]

[_linear]

4758

\[ {}x y^{\prime }+x +\left (a x +2\right ) y = 0 \]

[_linear]

4759

\[ {}x y^{\prime }+\left (b x +a \right ) y = 0 \]

[_separable]

4760

\[ {}x y^{\prime } = x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4761

\[ {}x y^{\prime } = a x -\left (-b \,x^{2}+1\right ) y \]

[_linear]

4762

\[ {}x y^{\prime }+x +\left (-x^{2} a +2\right ) y = 0 \]

[_linear]

4764

\[ {}x y^{\prime } = x^{2}+y \left (1+y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4766

\[ {}x y^{\prime } = a +b y^{2} \]

[_separable]

4772

\[ {}x y^{\prime }+\left (1-x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4773

\[ {}x y^{\prime } = \left (1-x y\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4774

\[ {}x y^{\prime } = \left (x y+1\right ) y \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4777

\[ {}x y^{\prime } = y \left (1+2 x y\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4785

\[ {}x y^{\prime }+\left (1-a y \ln \left (x \right )\right ) y = 0 \]

[_Bernoulli]

4786

\[ {}x y^{\prime } = y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \]

[[_homogeneous, ‘class D‘], _Riccati]

4787

\[ {}x y^{\prime } = y \left (1+y^{2}\right ) \]

[_separable]

4788

\[ {}x y^{\prime }+\left (1-x y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4789

\[ {}x y^{\prime }+y = a \left (x^{2}+1\right ) y^{3} \]

[_rational, _Bernoulli]

4792

\[ {}x y^{\prime } = 4 y-4 \sqrt {y} \]

[_separable]

4793

\[ {}x y^{\prime }+2 y = \sqrt {1+y^{2}} \]

[_separable]

4799

\[ {}x y^{\prime }+\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

4804

\[ {}x y^{\prime }+y+2 x \sec \left (x y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4809

\[ {}x y^{\prime }+\tan \left (y\right ) = 0 \]

[_separable]

4815

\[ {}x y^{\prime } = y \ln \left (y\right ) \]

[_separable]

4816

\[ {}x y^{\prime } = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y \]

[[_homogeneous, ‘class A‘], _dAlembert]

4817

\[ {}x y^{\prime }+\left (1-\ln \left (x \right )-\ln \left (y\right )\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

4821

\[ {}\left (x +1\right ) y^{\prime } = x^{3} \left (3 x +4\right )+y \]

[_linear]

4822

\[ {}\left (x +1\right ) y^{\prime } = \left (x +1\right )^{4}+2 y \]

[_linear]

4823

\[ {}\left (x +1\right ) y^{\prime } = {\mathrm e}^{x} \left (x +1\right )^{n +1}+n y \]

[_linear]

4828

\[ {}\left (x +a \right ) y^{\prime } = b x \]

[_quadrature]

4829

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

[_linear]

4830

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

[_linear]

4831

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

[_linear]

4832

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

[_separable]

4833

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

[_linear]

4834

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

[_separable]

4836

\[ {}2 x y^{\prime } = 2 x^{3}-y \]

[_linear]

4838

\[ {}2 x y^{\prime } = y \left (1+y^{2}\right ) \]

[_separable]

4839

\[ {}2 x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

[_separable]

4841

\[ {}2 x y^{\prime }+4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

[_separable]

4842

\[ {}\left (-2 x +1\right ) y^{\prime } = 16+32 x -6 y \]

[_linear]

4843

\[ {}\left (2 x +1\right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

[_separable]

4844

\[ {}2 \left (1-x \right ) y^{\prime } = 4 x \sqrt {1-x}+y \]

[_linear]

4848

\[ {}3 x y^{\prime } = \left (1+3 x y^{3} \ln \left (x \right )\right ) y \]

[_Bernoulli]

4849

\[ {}x^{2} y^{\prime } = -y+a \]

[_separable]

4850

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+x y \]

[_linear]

4851

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-x y \]

[_linear]

4852

\[ {}x^{2} y^{\prime }+\left (-2 x +1\right ) y = x^{2} \]

[_linear]

4853

\[ {}x^{2} y^{\prime } = a +b x y \]

[_linear]

4854

\[ {}x^{2} y^{\prime } = \left (b x +a \right ) y \]

[_separable]

4855

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = x \left (1-{\mathrm e}^{-2 x}\right )-2 \]

[_linear]

4856

\[ {}x^{2} y^{\prime }+2 x \left (1-x \right ) y = {\mathrm e}^{x} \left (2 \,{\mathrm e}^{x}-1\right ) \]

[_linear]

4860

\[ {}x^{2} y^{\prime } = \left (x +a y\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4864

\[ {}x^{2} y^{\prime }+2+x y \left (4+x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4866

\[ {}x^{2} y^{\prime } = a +b \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4868

\[ {}x^{2} y^{\prime } = a +b x y+c \,x^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4877

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-x^{2}+y \]

[_linear]

4878

\[ {}\left (-x^{2}+1\right ) y^{\prime }+1 = x y \]

[_linear]

4879

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 5-x y \]

[_linear]

4880

\[ {}y^{\prime } \left (x^{2}+1\right )+a +x y = 0 \]

[_linear]

4881

\[ {}y^{\prime } \left (x^{2}+1\right )+a -x y = 0 \]

[_linear]

4882

\[ {}\left (-x^{2}+1\right ) y^{\prime }+a -x y = 0 \]

[_linear]

4883

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x +x y = 0 \]

[_separable]

4884

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2}+x y = 0 \]

[_linear]

4885

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x^{2}+x y = 0 \]

[_linear]

4886

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \left (x^{2}+1\right )-x y \]

[_linear]

4887

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \left (3 x^{2}-y\right ) \]

[_linear]

4888

\[ {}\left (-x^{2}+1\right ) y^{\prime }+2 x y = 0 \]

[_separable]

4889

\[ {}y^{\prime } \left (x^{2}+1\right ) = 2 x \left (x -y\right ) \]

[_linear]

4890

\[ {}y^{\prime } \left (x^{2}+1\right ) = 2 x \left (x^{2}+1\right )^{2}+2 x y \]

[_linear]

4891

\[ {}\left (-x^{2}+1\right ) y^{\prime }+\cos \left (x \right ) = 2 x y \]

[_linear]

4892

\[ {}y^{\prime } \left (x^{2}+1\right ) = \tan \left (x \right )-2 x y \]

[_linear]

4893

\[ {}\left (-x^{2}+1\right ) y^{\prime } = a +4 x y \]

[_linear]

4894

\[ {}y^{\prime } \left (x^{2}+1\right ) = \left (2 b x +a \right ) y \]

[_separable]

4895

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1+y^{2} \]

[_separable]

4896

\[ {}\left (-x^{2}+1\right ) y^{\prime } = 1-y^{2} \]

[_separable]

4899

\[ {}y^{\prime } \left (x^{2}+1\right )+x y \left (1-y\right ) = 0 \]

[_separable]

4900

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y \left (1+a y\right ) \]

[_separable]

4903

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1+x^{2}-y \,\operatorname {arccot}\left (x \right ) \]

[_linear]

4905

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = b +x y \]

[_linear]

4906

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime } = \left (b +y\right ) \left (x +\sqrt {a^{2}+x^{2}}\right ) \]

[_separable]

4909

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime }+x y+b x y^{2} = 0 \]

[_separable]

4910

\[ {}x \left (1-x \right ) y^{\prime } = a +\left (x +1\right ) y \]

[_linear]

4911

\[ {}x \left (1-x \right ) y^{\prime } = 2 x y+2 \]

[_linear]

4912

\[ {}x \left (1-x \right ) y^{\prime } = 2 x y-2 \]

[_linear]

4913

\[ {}x \left (x +1\right ) y^{\prime } = \left (-2 x +1\right ) y \]

[_separable]

4914

\[ {}x \left (1-x \right ) y^{\prime }+\left (2 x +1\right ) y = a \]

[_linear]

4915

\[ {}x \left (1-x \right ) y^{\prime } = a +2 \left (2-x \right ) y \]

[_linear]

4916

\[ {}x \left (1-x \right ) y^{\prime }+2-3 x y+y = 0 \]

[_linear]

4917

\[ {}x \left (x +1\right ) y^{\prime } = \left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \]

[_linear]

4918

\[ {}\left (-2+x \right ) \left (x -3\right ) y^{\prime }+x^{2}-8 y+3 x y = 0 \]

[_linear]

4920

\[ {}\left (x +a \right )^{2} y^{\prime } = 2 \left (x +a \right ) \left (b +y\right ) \]

[_separable]

4922

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }+k y = 0 \]

[_separable]

4923

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime } = \left (x -a \right ) \left (x -b \right )+\left (2 x -a -b \right ) y \]

[_linear]

4927

\[ {}2 x^{2} y^{\prime } = y \]

[_separable]

4928

\[ {}2 x^{2} y^{\prime }+x \cot \left (x \right )-1+2 x^{2} y \cot \left (x \right ) = 0 \]

[_linear]

4929

\[ {}2 x^{2} y^{\prime }+1+2 x y-y^{2} x^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4931

\[ {}2 \left (-x^{2}+1\right ) y^{\prime } = \sqrt {-x^{2}+1}+\left (x +1\right ) y \]

[_linear]

4932

\[ {}x \left (-2 x +1\right ) y^{\prime }+1+\left (1-4 x \right ) y = 0 \]

[_linear]

4933

\[ {}x \left (-2 x +1\right ) y^{\prime } = 4 x -\left (1+4 x \right ) y+y^{2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4934

\[ {}2 x \left (1-x \right ) y^{\prime }+x +\left (-2 x +1\right ) y = 0 \]

[_linear]

4936

\[ {}2 \left (x^{2}+x +1\right ) y^{\prime } = 1+8 x^{2}-\left (2 x +1\right ) y \]

[_linear]

4937

\[ {}4 y^{\prime } \left (x^{2}+1\right )-4 x y-x^{2} = 0 \]

[_linear]

4940

\[ {}\left (b \,x^{2}+a \right ) y^{\prime } = c x y \ln \left (y\right ) \]

[_separable]

4941

\[ {}x \left (a x +1\right ) y^{\prime }+a -y = 0 \]

[_separable]

4943

\[ {}x^{3} y^{\prime } = a +b \,x^{2} y \]

[_linear]

4944

\[ {}x^{3} y^{\prime } = 3-x^{2}+x^{2} y \]

[_linear]

4946

\[ {}x^{3} y^{\prime } = y \left (y+x^{2}\right ) \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

4953

\[ {}x \left (x^{2}+1\right ) y^{\prime } = x^{2} a +y \]

[_linear]

4954

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{2} a +y \]

[_linear]

4955

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a \,x^{3}+y \]

[_linear]

4956

\[ {}x \left (x^{2}+1\right ) y^{\prime } = a -x^{2} y \]

[_linear]

4957

\[ {}x \left (x^{2}+1\right ) y^{\prime } = \left (-x^{2}+1\right ) y \]

[_separable]

4958

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = \left (x^{2}-x +1\right ) y \]

[_separable]

4959

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = a \,x^{3}+\left (-2 x^{2}+1\right ) y \]

[_linear]

4960

\[ {}x \left (-x^{2}+1\right ) y^{\prime } = x^{3} \left (-x^{2}+1\right )+\left (-2 x^{2}+1\right ) y \]

[_linear]

4961

\[ {}x \left (x^{2}+1\right ) y^{\prime } = 2-4 x^{2} y \]

[_linear]

4962

\[ {}x \left (x^{2}+1\right ) y^{\prime } = x -\left (5 x^{2}+3\right ) y \]

[_linear]

4966

\[ {}2 x^{3} y^{\prime } = \left (3 x^{2}+y^{2} a \right ) y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4973

\[ {}x \left (-x^{3}+1\right ) y^{\prime } = 2 x -\left (-4 x^{3}+1\right ) y \]

[_linear]

4976

\[ {}x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

[_separable]

4978

\[ {}x^{5} y^{\prime } = 1-3 x^{4} y \]

[_linear]

4981

\[ {}x^{n} y^{\prime } = a +b \,x^{n -1} y \]

[_linear]

4987

\[ {}\sqrt {x^{2}+1}\, y^{\prime } = 2 x -y \]

[_linear]

4990

\[ {}y^{\prime } \sqrt {a^{2}+x^{2}}+x +y = \sqrt {a^{2}+x^{2}} \]

[_linear]

4995

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

4996

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5003

\[ {}y^{\prime } \sqrt {X}+\sqrt {Y} = 0 \]

[_quadrature]

5004

\[ {}y^{\prime } \sqrt {X} = \sqrt {Y} \]

[_quadrature]

5007

\[ {}X^{{2}/{3}} y^{\prime } = Y^{{2}/{3}} \]

[_quadrature]

5009

\[ {}\left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

[_separable]

5010

\[ {}\left (-\sin \left (x \right )+1\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

5011

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

[_separable]

5012

\[ {}\left (\operatorname {a0} +\operatorname {a1} \sin \left (x \right )^{2}\right ) y^{\prime }+\operatorname {a2} x \left (\operatorname {a3} +\operatorname {a1} \sin \left (x \right )^{2}\right )+\operatorname {a1} y \sin \left (2 x \right ) = 0 \]

[_linear]

5013

\[ {}\left (-{\mathrm e}^{x}+x \right ) y^{\prime }+x \,{\mathrm e}^{x}+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

[_linear]

5014

\[ {}y^{\prime } x \ln \left (x \right ) = a x \left (\ln \left (x \right )+1\right )-y \]

[_linear]

5015

\[ {}y y^{\prime }+x = 0 \]

[_separable]

5016

\[ {}y y^{\prime }+x \,{\mathrm e}^{x^{2}} = 0 \]

[_separable]

5019

\[ {}y y^{\prime }+x \,{\mathrm e}^{-x} \left (1+y\right ) = 0 \]

[_separable]

5021

\[ {}y y^{\prime }+4 x \left (x +1\right )+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5022

\[ {}y y^{\prime } = a x +b y^{2} \]

[_rational, _Bernoulli]

5023

\[ {}y y^{\prime } = b \cos \left (x +c \right )+y^{2} a \]

[_Bernoulli]

5024

\[ {}y y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

5025

\[ {}y y^{\prime } = a x +b x y^{2} \]

[_separable]

5026

\[ {}y y^{\prime } = \csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \]

[_Bernoulli]

5027

\[ {}y y^{\prime } = \sqrt {y^{2}+a^{2}} \]

[_quadrature]

5028

\[ {}y y^{\prime } = \sqrt {y^{2}-a^{2}} \]

[_quadrature]

5031

\[ {}\left (1+y\right ) y^{\prime } = x^{2} \left (1-y\right ) \]

[_separable]

5032

\[ {}\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5033

\[ {}y^{\prime } \left (x -y\right ) = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5034

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5035

\[ {}\left (x +y\right ) y^{\prime } = x -y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5036

\[ {}1-y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

5037

\[ {}y^{\prime } \left (x -y\right ) = y \left (1+2 x y\right ) \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5038

\[ {}\left (x +y\right ) y^{\prime }+\tan \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5041

\[ {}\left (x +y+2\right ) y^{\prime } = 1-x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5044

\[ {}\left (2 x +y\right ) y^{\prime }+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5046

\[ {}\left (3+2 x -y\right ) y^{\prime }+2 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5048

\[ {}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5050

\[ {}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5055

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5056

\[ {}\left (x^{2}-y\right ) y^{\prime } = 4 x y \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5057

\[ {}\left (y-\cot \left (x \right ) \csc \left (x \right )\right ) y^{\prime }+\csc \left (x \right ) \left (1+y \cos \left (x \right )\right ) y = 0 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

5058

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5059

\[ {}2 y y^{\prime } = x y^{2}+x^{3} \]

[_rational, _Bernoulli]

5060

\[ {}\left (x -2 y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5061

\[ {}\left (x +2 y\right ) y^{\prime }+2 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5062

\[ {}\left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5063

\[ {}\left (1+x -2 y\right ) y^{\prime } = 1+2 x -y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5066

\[ {}2 \left (x +y\right ) y^{\prime }+x^{2}+2 y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

5067

\[ {}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5071

\[ {}\left (x^{3}+2 y\right ) y^{\prime } = 3 x \left (2-x y\right ) \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

5073

\[ {}\left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime } = 2 x \,{\mathrm e}^{-2 x}-\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

5074

\[ {}3 y y^{\prime }+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0 \]

[_separable]

5075

\[ {}3 \left (2-y\right ) y^{\prime }+x y = 0 \]

[_separable]

5081

\[ {}\left (4 y+x \right ) y^{\prime }+4 x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5083

\[ {}\left (5+2 x -4 y\right ) y^{\prime } = 3+x -2 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5084

\[ {}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5094

\[ {}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5098

\[ {}\left (a x +b y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5099

\[ {}\left (a x +b y\right ) y^{\prime }+b x +a y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5100

\[ {}\left (a x +b y\right ) y^{\prime } = b x +a y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5101

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

5102

\[ {}x y y^{\prime } = x +y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5103

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5104

\[ {}x y y^{\prime }+x^{4}-y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5105

\[ {}x y y^{\prime } = a \,x^{3} \cos \left (x \right )+y^{2} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

5108

\[ {}x y y^{\prime } = a +b y^{2} \]

[_separable]

5109

\[ {}x y y^{\prime } = a \,x^{n}+b y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5110

\[ {}x y y^{\prime } = \left (x^{2}+1\right ) \left (1-y^{2}\right ) \]

[_separable]

5113

\[ {}\left (x y+1\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5114

\[ {}x \left (1+y\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[_separable]

5115

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5116

\[ {}x \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

5117

\[ {}x \left (y+2\right ) y^{\prime }+a x = 0 \]

[_quadrature]

5118

\[ {}\left (2+3 x -x y\right ) y^{\prime }+y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

5121

\[ {}x \left (a +y\right ) y^{\prime } = y \left (B x +A \right ) \]

[_separable]

5123

\[ {}x \left (x -y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5125

\[ {}x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5134

\[ {}\left (x +a \right ) \left (x +b \right ) y^{\prime } = x y \]

[_separable]

5135

\[ {}2 x y y^{\prime }+1-2 x^{3}-y^{2} = 0 \]

[_rational, _Bernoulli]

5136

\[ {}2 x y y^{\prime }+a +y^{2} = 0 \]

[_separable]

5137

\[ {}2 x y y^{\prime } = a x +y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5138

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5139

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5140

\[ {}2 x y y^{\prime } = 4 x^{2} \left (2 x +1\right )+y^{2} \]

[_rational, _Bernoulli]

5141

\[ {}2 x y y^{\prime }+x^{2} \left (a \,x^{3}+1\right ) = 6 y^{2} \]

[_rational, _Bernoulli]

5142

\[ {}\left (3-x +2 x y\right ) y^{\prime }+3 x^{2}-y+y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5143

\[ {}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5145

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (2 x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5146

\[ {}x \left (1+x -2 y\right ) y^{\prime }+\left (1-2 x +y\right ) y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5147

\[ {}x \left (1-x -2 y\right ) y^{\prime }+\left (1+2 x +y\right ) y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5148

\[ {}2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5149

\[ {}2 \left (x +1\right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0 \]

[_exact, _rational, _Bernoulli]

5151

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5152

\[ {}\left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5153

\[ {}3 x \left (x +2 y\right ) y^{\prime }+x^{3}+3 y \left (2 x +y\right ) = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5154

\[ {}a x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5155

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5156

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

[_separable]

5157

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5159

\[ {}\left (1-x^{2} y\right ) y^{\prime }+1-x y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5161

\[ {}x \left (1-x y\right ) y^{\prime }+\left (x y+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5162

\[ {}x \left (x y+2\right ) y^{\prime } = 3+2 x^{3}-2 y-x y^{2} \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5163

\[ {}x \left (2-x y\right ) y^{\prime }+2 y-x y^{2} \left (x y+1\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5164

\[ {}x \left (3-x y\right ) y^{\prime } = y \left (x y-1\right ) \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5165

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[_separable]

5166

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (x +1\right ) y^{2} = 0 \]

[_separable]

5167

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

[_separable]

5168

\[ {}\left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2} = 0 \]

[_rational, _Bernoulli]

5169

\[ {}2 x^{2} y y^{\prime } = x^{2} \left (2 x +1\right )-y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5170

\[ {}x \left (1-2 x y\right ) y^{\prime }+y \left (1+2 x y\right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5171

\[ {}x \left (1+2 x y\right ) y^{\prime }+\left (2+3 x y\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5172

\[ {}x \left (1+2 x y\right ) y^{\prime }+\left (1+2 x y-y^{2} x^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5174

\[ {}2 \left (x +1\right ) x y y^{\prime } = 1+y^{2} \]

[_separable]

5175

\[ {}3 x^{2} y y^{\prime }+1+2 x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5177

\[ {}\left (1-x^{3} y\right ) y^{\prime } = y^{2} x^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5178

\[ {}2 x^{3} y y^{\prime }+a +3 y^{2} x^{2} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5179

\[ {}x \left (3-2 x^{2} y\right ) y^{\prime } = 4 x -3 y+3 y^{2} x^{2} \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5182

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

[_separable]

5183

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

5188

\[ {}y^{2} y^{\prime }+x \left (2-y\right ) = 0 \]

[_separable]

5189

\[ {}y^{2} y^{\prime } = x \left (1+y^{2}\right ) \]

[_separable]

5190

\[ {}\left (x +y^{2}\right ) y^{\prime }+y = b x +a \]

[_exact, _rational]

5191

\[ {}\left (x -y^{2}\right ) y^{\prime } = x^{2}-y \]

[_exact, _rational]

5192

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5193

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5194

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5195

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (x +2 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5196

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5198

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5199

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 x y = 0 \]

[_exact, _rational]

5200

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime } = y \]

[_rational]

5201

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5202

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime } = 4 x^{3} y \]

[[_homogeneous, ‘class G‘], _rational]

5203

\[ {}y \left (1+y\right ) y^{\prime } = x \left (x +1\right ) \]

[_separable]

5205

\[ {}\left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5206

\[ {}\left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5207

\[ {}\left (1+y+x y+y^{2}\right ) y^{\prime }+1+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5213

\[ {}\left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5217

\[ {}3 y^{2} y^{\prime } = 1+x +a y^{3} \]

[_rational, _Bernoulli]

5218

\[ {}\left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 x y = 0 \]

[_exact, _rational]

5220

\[ {}3 \left (x^{2}-y^{2}\right ) y^{\prime }+3 \,{\mathrm e}^{x}+6 x y \left (x +1\right )-2 y^{3} = 0 \]

[‘y=_G(x,y’)‘]

5221

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5223

\[ {}\left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }+x^{2}-3 x y^{2} = 0 \]

[_exact, _rational]

5224

\[ {}\left (x -6 y\right )^{2} y^{\prime }+a +2 x y-6 y^{2} = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

5225

\[ {}\left (x^{2}+y^{2} a \right ) y^{\prime } = x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5228

\[ {}\left (x^{2} a +2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5229

\[ {}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

[_separable]

5232

\[ {}x \left (1-x^{2}+y^{2}\right ) y^{\prime }+\left (1+x^{2}-y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5233

\[ {}x \left (a -x^{2}-y^{2}\right ) y^{\prime }+\left (a +x^{2}+y^{2}\right ) y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5236

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

[_separable]

5238

\[ {}x \left (x^{2}-x y-y^{2}\right ) y^{\prime } = \left (x^{2}+x y-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5239

\[ {}x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5240

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5244

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5245

\[ {}\left (1-4 x +3 x y^{2}\right ) y^{\prime } = \left (2-y^{2}\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5246

\[ {}x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

5247

\[ {}3 x \left (x +y^{2}\right ) y^{\prime }+x^{3}-3 x y-2 y^{3} = 0 \]

[_rational]

5249

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5250

\[ {}x \left (x +6 y^{2}\right ) y^{\prime }+x y-3 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5251

\[ {}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5252

\[ {}x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5253

\[ {}x^{2} y^{2} y^{\prime }+1-x +x^{3} = 0 \]

[_separable]

5254

\[ {}\left (1-y^{2} x^{2}\right ) y^{\prime } = x y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

5255

\[ {}\left (1-y^{2} x^{2}\right ) y^{\prime } = \left (x y+1\right ) y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5256

\[ {}x \left (1+x y^{2}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5257

\[ {}x \left (1+x y^{2}\right ) y^{\prime } = \left (2-3 x y^{2}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5259

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y^{2}\right ) = 0 \]

[_separable]

5260

\[ {}\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime }+2 x y \left (1-y\right )^{2} = 0 \]

[_separable]

5261

\[ {}\left (1-x^{3}+6 y^{2} x^{2}\right ) y^{\prime } = \left (6+3 x y-4 y^{3}\right ) x \]

[_exact, _rational]

5262

\[ {}x \left (3+5 x -12 x y^{2}+4 x^{2} y\right ) y^{\prime }+\left (3+10 x -8 x y^{2}+6 x^{2} y\right ) y = 0 \]

[_exact, _rational]

5263

\[ {}x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

[_separable]

5264

\[ {}x \left (1-x y\right )^{2} y^{\prime }+\left (1+y^{2} x^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5265

\[ {}\left (1-x^{4} y^{2}\right ) y^{\prime } = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational]

5266

\[ {}\left (3 x -y^{3}\right ) y^{\prime } = x^{2}-3 y \]

[_exact, _rational]

5267

\[ {}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5268

\[ {}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5269

\[ {}\left (x -x^{2} y-y^{3}\right ) y^{\prime } = x^{3}-y+x y^{2} \]

[_exact, _rational]

5270

\[ {}\left (a^{2} x +y \left (x^{2}-y^{2}\right )\right ) y^{\prime }+x \left (x^{2}-y^{2}\right ) = a^{2} y \]

[_rational]

5271

\[ {}\left (a +x^{2}+y^{2}\right ) y y^{\prime } = x \left (a -x^{2}-y^{2}\right ) \]

[_exact, _rational]

5272

\[ {}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5275

\[ {}y \left (1+2 y^{2}\right ) y^{\prime } = x \left (2 x^{2}+1\right ) \]

[_separable]

5277

\[ {}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5279

\[ {}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5280

\[ {}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5282

\[ {}x \left (x -y^{3}\right ) y^{\prime } = \left (3 x +y^{3}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5284

\[ {}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5286

\[ {}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5287

\[ {}x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5288

\[ {}x \left (x +y+2 y^{3}\right ) y^{\prime } = \left (x -y\right ) y \]

[_rational]

5289

\[ {}\left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5290

\[ {}x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y\right ) y = 0 \]

[_rational]

5292

\[ {}\left (2-10 x^{2} y^{3}+3 y^{2}\right ) y^{\prime } = x \left (1+5 y^{4}\right ) \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5293

\[ {}x \left (a +b x y^{3}\right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y = 0 \]

[_rational]

5294

\[ {}x \left (1-2 x^{2} y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y^{2}\right ) y = 0 \]

[_rational]

5295

\[ {}x \left (1-x y\right ) \left (1-y^{2} x^{2}\right ) y^{\prime }+\left (x y+1\right ) \left (1+y^{2} x^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5296

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime } = x y \]

[[_homogeneous, ‘class G‘], _rational]

5297

\[ {}\left (x^{3}-y^{4}\right ) y^{\prime } = 3 x^{2} y \]

[[_homogeneous, ‘class G‘], _rational]

5299

\[ {}2 \left (x -y^{4}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

5300

\[ {}\left (4 x -x y^{3}-2 y^{4}\right ) y^{\prime } = \left (2+y^{3}\right ) y \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5303

\[ {}2 x \left (x^{3}+y^{4}\right ) y^{\prime } = \left (x^{3}+2 y^{4}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5304

\[ {}x \left (1-x^{2} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5305

\[ {}\left (x^{2}-y^{5}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class G‘], _rational]

5306

\[ {}x \left (x^{3}+y^{5}\right ) y^{\prime } = \left (x^{3}-y^{5}\right ) y \]

[[_homogeneous, ‘class G‘], _rational]

5307

\[ {}x^{3} \left (1+5 x^{3} y^{7}\right ) y^{\prime }+\left (3 x^{5} y^{5}-1\right ) y^{3} = 0 \]

[_rational]

5311

\[ {}y^{\prime } \sqrt {b^{2}+y^{2}} = \sqrt {a^{2}+x^{2}} \]

[_separable]

5312

\[ {}y^{\prime } \sqrt {b^{2}-y^{2}} = \sqrt {a^{2}-x^{2}} \]

[_separable]

5313

\[ {}y^{\prime } \sqrt {y} = \sqrt {x} \]

[_separable]

5324

\[ {}y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right ) = 0 \]

unknown

5325

\[ {}\left (a \cos \left (b x +a y\right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (b x +a y\right )-a \sin \left (a x +b y\right ) = 0 \]

[_exact]

5326

\[ {}\left (x +\cos \left (x \right ) \sec \left (y\right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right ) = 0 \]

[NONE]

5327

\[ {}\left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

5328

\[ {}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5329

\[ {}\left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+y \,{\mathrm e}^{x}+{\mathrm e}^{y} = 0 \]

[_exact]

5330

\[ {}\left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

5331

\[ {}\left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right ) = 0 \]

[_exact]

5332

\[ {}y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right ) = 0 \]

[_separable]

5343

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

5345

\[ {}{y^{\prime }}^{2} = y^{2} x^{2} \]

[_separable]

5359

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5360

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

5374

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-3 x^{2} = 0 \]

[_quadrature]

5386

\[ {}{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 x y^{\prime } = 0 \]

[_quadrature]

5391

\[ {}{y^{\prime }}^{2}+y y^{\prime } = x \left (x +y\right ) \]

[_quadrature]

5393

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

5396

\[ {}{y^{\prime }}^{2}-2 y^{\prime } \left (x -y\right )-4 x y = 0 \]

[_quadrature]

5402

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

5404

\[ {}{y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+2 x y = 0 \]

[_quadrature]

5406

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

5409

\[ {}{y^{\prime }}^{2}-x y \left (y^{2}+x^{2}\right ) y^{\prime }+x^{4} y^{4} = 0 \]

[_separable]

5410

\[ {}{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

5435

\[ {}x {y^{\prime }}^{2}-y^{\prime } \left (x^{2}+1\right )+x = 0 \]

[_quadrature]

5451

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

5454

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

5455

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5456

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5471

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5472

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

[_separable]

5474

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

5476

\[ {}x^{2} {y^{\prime }}^{2}-x y^{\prime }+y \left (1-y\right ) = 0 \]

[_separable]

5485

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

5487

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

5489

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5501

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

[_separable]

5507

\[ {}x^{3} {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5512

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5521

\[ {}y {y^{\prime }}^{2} = {\mathrm e}^{2 x} \]

[[_1st_order, _with_linear_symmetries]]

5527

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

5529

\[ {}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5530

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5537

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5539

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

5540

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5541

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

[_separable]

5544

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

[_separable]

5547

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5564

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5565

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5569

\[ {}4 y^{2} {y^{\prime }}^{2}+2 \left (3 x +1\right ) x y y^{\prime }+3 x^{3} = 0 \]

[_separable]

5570

\[ {}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5579

\[ {}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (y^{2}+x^{2}\right )^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5594

\[ {}{y^{\prime }}^{3}-7 y^{\prime }+6 = 0 \]

[_quadrature]

5613

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5615

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+x y \left (y^{2}+x y+x^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5624

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5630

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

[_quadrature]

5637

\[ {}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

5689

\[ {}y^{\prime } = \frac {x y}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5692

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{2} \]

[_linear]

5694

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5695

\[ {}y+x y^{2}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5699

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

5700

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

5701

\[ {}x y \left (x^{2}+1\right ) y^{\prime }-1-y^{2} = 0 \]

[_separable]

5703

\[ {}\sin \left (x \right ) \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

5704

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

5705

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5708

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5712

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

5713

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

5714

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

5715

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

5716

\[ {}y^{\prime } \left (x^{2}+1\right )+y = \arctan \left (x \right ) \]

[_linear]

5717

\[ {}\left (-x^{2}+1\right ) z^{\prime }-x z = a x z^{2} \]

[_separable]

5718

\[ {}3 z^{2} z^{\prime }-a z^{3} = x +1 \]

[_rational, _Bernoulli]

5721

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5722

\[ {}x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5723

\[ {}1+\frac {y^{2}}{x^{2}}-\frac {2 y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

5724

\[ {}\frac {3 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5725

\[ {}x +y y^{\prime }+\frac {x y^{\prime }}{y^{2}+x^{2}}-\frac {y}{y^{2}+x^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

5726

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5727

\[ {}{\mathrm e}^{x} \left (x^{2}+y^{2}+2 x \right )+2 y \,{\mathrm e}^{x} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

5728

\[ {}n \cos \left (n x +m y\right )-m \sin \left (m x +n y\right )+\left (m \cos \left (n x +m y\right )-n \sin \left (m x +n y\right )\right ) y^{\prime } = 0 \]

[_exact]

5729

\[ {}\frac {x}{\sqrt {1+x^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y}{y^{2}+x^{2}}-\frac {x y^{\prime }}{y^{2}+x^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

5731

\[ {}2 x y+\left (y^{2}-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5732

\[ {}\frac {1}{x}+\frac {y^{\prime }}{y}+\frac {2}{y}-\frac {2 y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5737

\[ {}\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y+\left (x \cos \left (\frac {y}{x}\right )-y \sin \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5738

\[ {}\left (y^{2} x^{2}+x y\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5739

\[ {}\left (x^{3} y^{3}+y^{2} x^{2}+x y+1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5740

\[ {}2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5741

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5742

\[ {}2 x y+\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5743

\[ {}y+\left (2 y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5750

\[ {}{y^{\prime }}^{2}-5 y^{\prime }+6 = 0 \]

[_quadrature]

5751

\[ {}{y^{\prime }}^{2}-\frac {a^{2}}{x^{2}} = 0 \]

[_quadrature]

5771

\[ {}2 x y+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5773

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5777

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5778

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5779

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5781

\[ {}y^{2}+x^{2} = 2 x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5784

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5787

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

[_quadrature]

5791

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

[_separable]

5794

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5797

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5799

\[ {}3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

5800

\[ {}\frac {1+2 x y}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5801

\[ {}2 x y+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5802

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5803

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5804

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

5805

\[ {}x^{2}-x +y^{2}-\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = 0 \]

[_exact]

5806

\[ {}2 x +y \cos \left (x \right )+\left (2 y+\sin \left (x \right )-\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5807

\[ {}x \sqrt {y^{2}+x^{2}}-\frac {x^{2} y y^{\prime }}{y-\sqrt {y^{2}+x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5808

\[ {}4 x^{3}-\sin \left (x \right )+y^{3}-\left (y^{2}+1-3 x y^{2}\right ) y^{\prime } = 0 \]

[_exact]

5809

\[ {}{\mathrm e}^{x} \left (y^{3}+x y^{3}+1\right )+3 y^{2} \left (x \,{\mathrm e}^{x}-6\right ) y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

5810

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

5811

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

5812

\[ {}y^{2}+y-x y^{\prime } = 0 \]

[_separable]

5813

\[ {}y \sec \left (x \right )+\sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

5814

\[ {}{\mathrm e}^{x}-\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

5815

\[ {}x y+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

5816

\[ {}y^{3}+x y^{2}+y+\left (x^{3}+x^{2} y+x \right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5817

\[ {}3 y-x y^{\prime } = 0 \]

[_separable]

5818

\[ {}y-3 x y^{\prime } = 0 \]

[_separable]

5820

\[ {}2 x y+x^{2}+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5821

\[ {}x^{2}+y \cos \left (x \right )+\left (y^{3}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

5822

\[ {}x^{2}+y^{2}+x +x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

5823

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

5824

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

5825

\[ {}x^{2}-y^{2}-y-\left (x^{2}-y^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

5826

\[ {}x^{4} y^{2}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0 \]

[_rational]

5827

\[ {}y \left (2 x +y^{3}\right )-x \left (2 x -y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5828

\[ {}\arctan \left (x y\right )+\frac {x y-2 x y^{2}}{1+y^{2} x^{2}}+\frac {\left (x^{2}-2 x^{2} y\right ) y^{\prime }}{1+y^{2} x^{2}} = 0 \]

[_exact]

5829

\[ {}{\mathrm e}^{x} \left (x +1\right )+\left ({\mathrm e}^{y} y-x \,{\mathrm e}^{x}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

5830

\[ {}\frac {x y+1}{y}+\frac {\left (2 y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5831

\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5832

\[ {}\left (1+2 x +y\right ) y-x \left (x +2 y-1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5833

\[ {}y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5834

\[ {}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5835

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5836

\[ {}y-\left (x^{2}+y^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

5837

\[ {}2 x y+\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5838

\[ {}2 x y+x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

5839

\[ {}x y^{\prime }+y = x^{3} \]

[_linear]

5840

\[ {}y^{\prime }+a y = b \]

[_quadrature]

5841

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

5842

\[ {}x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

[_linear]

5843

\[ {}r^{\prime } = \left (r+{\mathrm e}^{-\theta }\right ) \tan \left (\theta \right ) \]

[_linear]

5844

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

[_linear]

5847

\[ {}\tan \left (\theta \right ) r^{\prime }-r = \tan \left (\theta \right )^{2} \]

[_linear]

5848

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

5849

\[ {}y^{\prime }+2 y = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

[[_linear, ‘class A‘]]

5850

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

5851

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{2 x} \]

[_linear]

5852

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

5853

\[ {}x y^{\prime }+y = x \sin \left (x \right ) \]

[_linear]

5854

\[ {}-y+x y^{\prime } = x^{2} \sin \left (x \right ) \]

[_linear]

5855

\[ {}x y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5856

\[ {}x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

5858

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

5861

\[ {}\left (x -\cos \left (y\right )\right ) y^{\prime }+\tan \left (y\right ) = 0 \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5864

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5866

\[ {}2 x y y^{\prime }+\left (x +1\right ) y^{2} = {\mathrm e}^{x} \]

[_Bernoulli]

5867

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x^{2} \]

[‘y=_G(x,y’)‘]

5869

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

5870

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

5873

\[ {}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5874

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5877

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]

[_exact]

5879

\[ {}x y^{\prime }+y = x^{2} \left (1+{\mathrm e}^{x}\right ) y^{2} \]

[_Bernoulli]

5880

\[ {}2 y-x y \ln \left (x \right )-2 x \ln \left (x \right ) y^{\prime } = 0 \]

[_separable]

5881

\[ {}y^{\prime }+a y = k \,{\mathrm e}^{b x} \]

[[_linear, ‘class A‘]]

5885

\[ {}y^{\prime }+a y = b \sin \left (k x \right ) \]

[[_linear, ‘class A‘]]

5886

\[ {}x y^{\prime }-y^{2}+1 = 0 \]

[_separable]

5887

\[ {}\left (y^{2}+a \sin \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

5889

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]

[_linear]

5890

\[ {}x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

5891

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

5892

\[ {}x y^{\prime }+a y+b \,x^{n} = 0 \]

[_linear]

5894

\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5895

\[ {}\left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5897

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

[_linear]

5898

\[ {}\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5899

\[ {}\left (x^{2}-1\right ) y^{\prime }+x y-3 x y^{2} = 0 \]

[_separable]

5900

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

5901

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+2 x y+x^{2}+3 = 0 \]

[_exact, _rational]

5902

\[ {}y^{\prime } \cos \left (x \right )+y+\left (\sin \left (x \right )+1\right ) \cos \left (x \right ) = 0 \]

[_linear]

5903

\[ {}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5904

\[ {}\left (x^{2}-y\right ) y^{\prime }+x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

5905

\[ {}\left (x^{2}-y\right ) y^{\prime }-4 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5906

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5907

\[ {}2 x y y^{\prime }+3 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5908

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5909

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (1+y^{2} x^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5910

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

5911

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

5913

\[ {}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0 \]

[_rational]

5914

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

6020

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

6025

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

6029

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

[[_linear, ‘class A‘]]

6031

\[ {}x \left (1-y\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[_separable]

6032

\[ {}y^{\prime } = a y^{2} x \]

[_separable]

6033

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

6034

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

[_separable]

6035

\[ {}\frac {x}{1+y} = \frac {y y^{\prime }}{x +1} \]

[_separable]

6036

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

6037

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

6038

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

[_separable]

6039

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

[_separable]

6092

\[ {}y^{\prime } = y \]

[_quadrature]

6093

\[ {}x y^{\prime } = y \]
i.c.

[_separable]

6096

\[ {}1+y^{2}+x y y^{\prime } = 0 \]
i.c.

[_separable]

6097

\[ {}x y y^{\prime }-x y = y \]
i.c.

[_quadrature]

6098

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]
i.c.

[_separable]

6099

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]
i.c.

[_separable]

6100

\[ {}y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

6101

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

6102

\[ {}y^{\prime }-x y = x \]
i.c.

[_separable]

6103

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

6104

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

6120

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6121

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

6122

\[ {}2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

[_exact]

6123

\[ {}y^{\prime } \left (x -y\right )+x +y+1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6124

\[ {}\cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0 \]

unknown

6125

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6127

\[ {}x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6128

\[ {}y^{2}-x y+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6131

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

[_linear]

6133

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6208

\[ {}x^{2} y^{\prime }-x y = \frac {1}{x} \]

[_linear]

6209

\[ {}x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right ) = 0 \]

[_separable]

6212

\[ {}2 x -y \sin \left (2 x \right ) = \left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

6214

\[ {}3 x^{3} y^{2} y^{\prime }-x^{2} y^{3} = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6217

\[ {}u \left (-v +1\right )+v^{2} \left (1-u\right ) u^{\prime } = 0 \]

[_separable]

6218

\[ {}y+2 x -x y^{\prime } = 0 \]

[_linear]

6224

\[ {}\left (2 x +y\right ) y^{\prime }-x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6225

\[ {}\left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6226

\[ {}\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right ) = 0 \]

[_linear]

6228

\[ {}y^{\prime }+x y = \frac {x}{y} \]

[_separable]

6230

\[ {}\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2} = r \cos \left (\theta \right )^{2} \]

[_linear]

6232

\[ {}3 x^{2} y+x^{3} y^{\prime } = 0 \]
i.c.

[_separable]

6233

\[ {}-y+x y^{\prime } = x^{2} \]
i.c.

[_linear]

6237

\[ {}x y^{\prime } = x y+y \]

[_separable]

6239

\[ {}y^{\prime } = 3 x^{2} y \]

[_separable]

6241

\[ {}x y^{\prime } = y \]

[_separable]

6257

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

6259

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

[_separable]

6260

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

[_separable]

6262

\[ {}x y^{\prime } = \frac {1}{y^{3}} \]

[_separable]

6263

\[ {}x^{\prime } = 3 x t^{2} \]

[_separable]

6264

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

[_separable]

6265

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \]

[_separable]

6266

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

[_separable]

6267

\[ {}y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1} \]

[_separable]

6268

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \]

[_separable]

6269

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

6270

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

[_separable]

6271

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0 \]

[_separable]

6272

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

6273

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]
i.c.

[_separable]

6274

\[ {}\frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right ) \]
i.c.

[_separable]

6275

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \]
i.c.

[_separable]

6276

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]
i.c.

[_separable]

6277

\[ {}x^{2}+2 y y^{\prime } = 0 \]
i.c.

[_separable]

6278

\[ {}y^{\prime } = 2 t \cos \left (y\right )^{2} \]
i.c.

[_separable]

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

6280

\[ {}y^{\prime } = x^{2} \left (1+y\right ) \]
i.c.

[_separable]

6281

\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6282

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]
i.c.

[_quadrature]

6283

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]
i.c.

[_separable]

6284

\[ {}y^{\prime } = \sqrt {\sin \left (x \right )+1}\, \left (1+y^{2}\right ) \]
i.c.

[_separable]

6285

\[ {}y^{\prime } = 2 y-2 t y \]
i.c.

[_separable]

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

6288

\[ {}y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}} \]

[_separable]

6289

\[ {}y^{\prime } = x y^{3} \]

[_separable]

6290

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6291

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6292

\[ {}y^{\prime } = x y^{3} \]
i.c.

[_separable]

6293

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

6294

\[ {}x^{2} y^{\prime }+\sin \left (x \right )-y = 0 \]

[_linear]

6296

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

[_separable]

6297

\[ {}3 t = {\mathrm e}^{t} y^{\prime }+y \ln \left (t \right ) \]

[_linear]

6299

\[ {}3 r = r^{\prime }-\theta ^{3} \]

[[_linear, ‘class A‘]]

6300

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

[[_linear, ‘class A‘]]

6301

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

[_linear]

6302

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

[_linear]

6303

\[ {}x y^{\prime }+2 y = \frac {1}{x^{3}} \]

[_linear]

6304

\[ {}t +y+1-y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

6305

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

[[_linear, ‘class A‘]]

6306

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

[_linear]

6307

\[ {}x y^{\prime }+3 y+3 x^{2} = \frac {\sin \left (x \right )}{x} \]

[_linear]

6308

\[ {}y^{\prime } \left (x^{2}+1\right )+x y-x = 0 \]

[_separable]

6309

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (x +1\right ) \sqrt {-x^{2}+1} \]

[_linear]

6310

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]
i.c.

[_linear]

6311

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]
i.c.

[[_linear, ‘class A‘]]

6312

\[ {}t^{2} x^{\prime }+3 x t = t^{4} \ln \left (t \right )+1 \]
i.c.

[_linear]

6313

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]
i.c.

[_linear]

6314

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 2 x \cos \left (x \right )^{2} \]
i.c.

[_linear]

6315

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \sin \left (x \right ) \]
i.c.

[_linear]

6317

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

6318

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

[_rational, _Bernoulli]

6319

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

[_linear]

6320

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]
i.c.

[[_linear, ‘class A‘]]

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

6322

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

[_linear]

6323

\[ {}x^{{10}/{3}}-2 y+x y^{\prime } = 0 \]

[_linear]

6325

\[ {}y \,{\mathrm e}^{x y}+2 x +\left (x \,{\mathrm e}^{x y}-2 y\right ) y^{\prime } = 0 \]

[_exact]

6326

\[ {}y^{\prime }+x y = 0 \]

[_separable]

6327

\[ {}y^{2}+\left (2 x y+\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6328

\[ {}2 x +y \cos \left (x y\right )+\left (x \cos \left (x y\right )-2 y\right ) y^{\prime } = 0 \]

[_exact]

6329

\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \]

[_linear]

6330

\[ {}2 x y+3+\left (x^{2}-1\right ) y^{\prime } = 0 \]

[_linear]

6331

\[ {}2 x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6332

\[ {}{\mathrm e}^{x} \sin \left (y\right )-3 x^{2}+\left ({\mathrm e}^{x} \cos \left (y\right )+\frac {1}{3 y^{{2}/{3}}}\right ) y^{\prime } = 0 \]

[_exact]

6333

\[ {}\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime } = 0 \]

[_exact]

6334

\[ {}{\mathrm e}^{t} \left (-t +y\right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \]

[_linear]

6335

\[ {}\frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0 \]

[_separable]

6336

\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \]

[_linear]

6337

\[ {}y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

6338

\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6339

\[ {}2 x +y^{2}-\cos \left (x +y\right )+\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

6340

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1} \]

[_separable]

6341

\[ {}y^{\prime }-4 y = 32 x^{2} \]

[[_linear, ‘class A‘]]

6342

\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \]

[_exact, _rational]

6343

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

[_linear]

6344

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6345

\[ {}y^{2} t^{3}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

[_separable]

6399

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

6400

\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \]
i.c.

[_linear]

6401

\[ {}y^{\prime }+y = \left (x +1\right )^{2} \]
i.c.

[[_linear, ‘class A‘]]

6402

\[ {}x^{2} y^{\prime }+2 x y = \sinh \left (x \right ) \]
i.c.

[_linear]

6403

\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

[_linear]

6404

\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

[_linear]

6405

\[ {}y^{\prime } \left (x^{2}+1\right ) = x y+1 \]

[_linear]

6406

\[ {}y^{\prime }+x y = x y^{2} \]

[_separable]

6416

\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \]

[_linear]

6417

\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \]

[_linear]

6419

\[ {}x y^{\prime } = x^{2}+2 x -3 \]

[_quadrature]

6421

\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

6422

\[ {}-y+x y^{\prime } = x^{2} \]

[_linear]

6423

\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \]

[_quadrature]

6424

\[ {}x \cos \left (y\right ) y^{\prime }-\sin \left (y\right ) = 0 \]

[_separable]

6426

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \]

[_separable]

6427

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \sinh \left (x \right ) \]

[_linear]

6428

\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \]

[_linear]

6429

\[ {}y^{\prime }+\frac {y}{x} = y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6431

\[ {}x \left (-3+y\right ) y^{\prime } = 4 y \]

[_separable]

6432

\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \]
i.c.

[_separable]

6433

\[ {}x^{3}+\left (1+y\right )^{2} y^{\prime } = 0 \]

[_separable]

6434

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6436

\[ {}\left (2 y-x \right ) y^{\prime } = 2 x +y \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6437

\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6438

\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6440

\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6447

\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6450

\[ {}y \left (x y+1\right )+x \left (1+x y+y^{2} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6456

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+1 \]

[_linear]

6460

\[ {}y+\left (x^{2}-4 x \right ) y^{\prime } = 0 \]

[_separable]

6461

\[ {}y^{\prime }-y \tan \left (x \right ) = \cos \left (x \right )-2 x \sin \left (x \right ) \]
i.c.

[_linear]

6462

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6463

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \left (1+y\right ) \]

[_separable]

6464

\[ {}x y^{\prime }+2 y = 3 x -1 \]
i.c.

[_linear]

6465

\[ {}x^{2} y^{\prime } = y^{2}-x y y^{\prime } \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6466

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]
i.c.

[_separable]

6467

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (2 x \right ) \]
i.c.

[_linear]

6468

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6469

\[ {}2 x y y^{\prime } = x^{2}-y^{2} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6470

\[ {}y^{\prime } = \frac {1+x -2 y}{2 x -4 y} \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6471

\[ {}\left (-x^{3}+1\right ) y^{\prime }+x^{2} y = x^{2} \left (-x^{3}+1\right ) \]

[_linear]

6472

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]
i.c.

[_linear]

6473

\[ {}y^{\prime }+x +x y^{2} = 0 \]
i.c.

[_separable]

6474

\[ {}y^{\prime }+\left (\frac {1}{x}-\frac {2 x}{-x^{2}+1}\right ) y = \frac {1}{-x^{2}+1} \]

[_linear]

6475

\[ {}x y+y^{\prime } \left (x^{2}+1\right ) = \left (x^{2}+1\right )^{{3}/{2}} \]

[_linear]

6476

\[ {}x \left (1+y^{2}\right )-y \left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

6477

\[ {}\frac {r \tan \left (\theta \right ) r^{\prime }}{a^{2}-r^{2}} = 1 \]
i.c.

[_separable]

6478

\[ {}y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_linear]

6479

\[ {}y^{\prime }+\frac {y}{x} = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6516

\[ {}y^{\prime }-5 y = \left (x -1\right ) \sin \left (x \right )+\left (x +1\right ) \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

6517

\[ {}y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

[[_linear, ‘class A‘]]

6518

\[ {}y^{\prime }-5 y = {\mathrm e}^{x} x^{2}-x \,{\mathrm e}^{5 x} \]

[[_linear, ‘class A‘]]

6524

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

6525

\[ {}y^{\prime }-y = x \,{\mathrm e}^{2 x}+1 \]

[[_linear, ‘class A‘]]

6526

\[ {}y^{\prime }-y = \sin \left (x \right )+\cos \left (2 x \right ) \]

[[_linear, ‘class A‘]]

6534

\[ {}y^{\prime }+\frac {4 y}{x} = x^{4} \]

[_linear]

6543

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

6570

\[ {}x y^{\prime } = 2 y \]

[_separable]

6571

\[ {}y y^{\prime }+x = 0 \]

[_separable]

6573

\[ {}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6580

\[ {}4 y+x y^{\prime } = 0 \]

[_separable]

6581

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

6582

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

6583

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

6584

\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6585

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6587

\[ {}y \sqrt {y^{2}+x^{2}}-x \left (x +\sqrt {y^{2}+x^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

6589

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

6590

\[ {}x y+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

6591

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6595

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6596

\[ {}y \left (1+2 x y\right )+x \left (1-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6597

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

6598

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6600

\[ {}x y^{\prime }+2 y = 0 \]
i.c.

[_separable]

6601

\[ {}x^{2}+y^{2}+x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6602

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

6606

\[ {}x^{2}-y-x y^{\prime } = 0 \]

[_linear]

6607

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6608

\[ {}x +y \cos \left (x \right )+\sin \left (x \right ) y^{\prime } = 0 \]

[_linear]

6609

\[ {}2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6610

\[ {}4 x^{3} y^{3}+\frac {1}{x}+\left (3 x^{4} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

6611

\[ {}2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6612

\[ {}x \sqrt {y^{2}+x^{2}}-y+\left (y \sqrt {y^{2}+x^{2}}-x \right ) y^{\prime } = 0 \]

[_exact]

6613

\[ {}x +y+1-\left (y-x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6614

\[ {}y^{2}-\frac {y}{x \left (x +y\right )}+2+\left (\frac {1}{x +y}+2 \left (x +1\right ) y\right ) y^{\prime } = 0 \]

[_exact, _rational]

6615

\[ {}2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \]

[_exact]

6616

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6617

\[ {}x^{2}+y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6618

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6619

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

6621

\[ {}x -x^{2}-y^{2}+y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

6622

\[ {}2 y-3 x +x y^{\prime } = 0 \]

[_linear]

6623

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6624

\[ {}-y-3 x^{2} \left (y^{2}+x^{2}\right )+x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6625

\[ {}y-\ln \left (x \right )-x y^{\prime } = 0 \]

[_linear]

6626

\[ {}3 x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6627

\[ {}x y-2 y^{2}-\left (x^{2}-3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6628

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6629

\[ {}2 y-3 x y^{2}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6630

\[ {}y+x \left (x^{2} y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6631

\[ {}y+x^{3} y+2 x^{2}+\left (x +4 x y^{4}+8 y^{3}\right ) y^{\prime } = 0 \]

[_rational]

6632

\[ {}-y-{\mathrm e}^{x} x^{2}+x y^{\prime } = 0 \]

[_linear]

6634

\[ {}2 y-x^{3}+x y^{\prime } = 0 \]

[_linear]

6635

\[ {}y+\left (y^{2}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6636

\[ {}3 y^{3}-x y-\left (x^{2}+6 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

6637

\[ {}3 y^{2} x^{2}+4 \left (x^{3} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6638

\[ {}y \left (x +y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6639

\[ {}2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6640

\[ {}y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6641

\[ {}-y+x y^{\prime } = 0 \]

[_separable]

6642

\[ {}y^{\prime }+y = 2 x +2 \]

[[_linear, ‘class A‘]]

6643

\[ {}y^{\prime }-y = x y \]

[_separable]

6644

\[ {}-3 y-\left (-2+x \right ) {\mathrm e}^{x}+x y^{\prime } = 0 \]

[_linear]

6645

\[ {}i^{\prime }-6 i = 10 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

6647

\[ {}y+\left (x y+x -3 y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6648

\[ {}\left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime } = 2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

6649

\[ {}x y^{\prime }+y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6650

\[ {}r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right ) = 0 \]

[_linear]

6651

\[ {}y \left (1+y^{2}\right ) = 2 \left (1-2 x y^{2}\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6652

\[ {}y y^{\prime }-x y^{2}+x = 0 \]

[_separable]

6654

\[ {}2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right ) = 0 \]

[_Bernoulli]

6655

\[ {}x y^{\prime } = y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \]

[_linear]

6656

\[ {}2+y^{2}-\left (x y+2 y+y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6657

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6659

\[ {}1+\sin \left (y\right ) = \left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6660

\[ {}x y^{\prime } = 2 y+x^{3} {\mathrm e}^{x} \]
i.c.

[_linear]

6661

\[ {}L i^{\prime }+R i = E \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

6662

\[ {}x^{2} \cos \left (y\right ) y^{\prime } = 2 x \sin \left (y\right )-1 \]

[‘y=_G(x,y’)‘]

6664

\[ {}x y^{3}-y^{3}-{\mathrm e}^{x} x^{2}+3 x y^{2} y^{\prime } = 0 \]

[_Bernoulli]

6666

\[ {}y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

6667

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

6668

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0 \]

[_quadrature]

6795

\[ {}x y^{\prime } = 1-x +2 y \]

[_linear]

6843

\[ {}y^{\prime }+x y = \frac {1}{x^{3}} \]

[_linear]

7058

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

7059

\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \]

[_separable]

7060

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

7061

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

7062

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

7063

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

7064

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

7065

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

7066

\[ {}x y^{\prime }+y = y^{2} \]
i.c.

[_separable]

7067

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

7068

\[ {}y^{\prime }-x y^{2} = 2 x y \]

[_separable]

7069

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

7070

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

7071

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

7072

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

7073

\[ {}x +2 x^{3}+\left (2 y^{3}+y\right ) y^{\prime } = 0 \]

[_separable]

7074

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

7075

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

7076

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

[_separable]

7077

\[ {}y^{\prime } = \left (y-1\right ) \left (x +1\right ) \]

[_separable]

7078

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7079

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

7080

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

7081

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

7082

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

7084

\[ {}y^{\prime }-y = 2 x -3 \]

[[_linear, ‘class A‘]]

7085

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]
i.c.

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

7086

\[ {}y^{\prime }+y = 2 x +1 \]

[[_linear, ‘class A‘]]

7091

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

7092

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0 \]

[_separable]

7093

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7094

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

7096

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7097

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7104

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7106

\[ {}-y+x y^{\prime } = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7107

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7110

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7111

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7114

\[ {}x y^{\prime } = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

7115

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]
i.c.

[_quadrature]

7117

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

7120

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

7121

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7122

\[ {}x y^{\prime } = x +\frac {y}{2} \]
i.c.

[_linear]

7123

\[ {}y^{\prime } = \frac {x +y-2}{y-4-x} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7130

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7132

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7150

\[ {}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

7151

\[ {}\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7152

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

7178

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

7179

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

[_separable]

7180

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

7183

\[ {}{\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

7184

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

7185

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7186

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7187

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7188

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

7191

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

7192

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

7223

\[ {}\left (1+y^{2} x^{2}\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7224

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

7231

\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_separable]

7232

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

7236

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7237

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7238

\[ {}-y+x y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7240

\[ {}x +y y^{\prime }+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7256

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

7259

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

7260

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (x \right ) \cos \left (x \right ) \]

[_linear]

7264

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

7266

\[ {}y^{\prime } = k y \]

[_quadrature]

7267

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

7268

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

7269

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

7270

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

7273

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

7274

\[ {}L y^{\prime }+R y = E \sin \left (\omega x \right ) \]
i.c.

[[_linear, ‘class A‘]]

7276

\[ {}y^{\prime }+a y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

7277

\[ {}y^{\prime }+2 x y = x \]

[_separable]

7278

\[ {}x y^{\prime }+y = 3 x^{3}-1 \]

[_linear]

7279

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

7280

\[ {}y^{\prime }-y \tan \left (x \right ) = {\mathrm e}^{\sin \left (x \right )} \]

[_linear]

7281

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

7282

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]
i.c.

[_linear]

7283

\[ {}x^{2} y^{\prime }+2 x y = 1 \]

[_linear]

7284

\[ {}y^{\prime }+2 y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

7285

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

7286

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7287

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7407

\[ {}y^{\prime } = x^{2} y \]

[_separable]

7408

\[ {}y y^{\prime } = x \]

[_separable]

7409

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

[_separable]

7410

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

7411

\[ {}y^{\prime } = y^{2} x^{2}-4 x^{2} \]

[_separable]

7412

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

7413

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7414

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7415

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7416

\[ {}y^{\prime } = \frac {y^{2}}{x y+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7419

\[ {}y^{\prime } = \frac {x -y+2}{y-1+x} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7423

\[ {}2 x y+\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7424

\[ {}x^{2}+x y+\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

7425

\[ {}{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

7426

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

7427

\[ {}x^{2} y^{3}-x^{3} y^{2} y^{\prime } = 0 \]

[_separable]

7428

\[ {}x +y+y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7429

\[ {}2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

7430

\[ {}3 x^{2} \ln \left (x \right )+x^{2}+y+x y^{\prime } = 0 \]

[_linear]

7431

\[ {}2 y^{3}+2+3 x y^{2} y^{\prime } = 0 \]

[_separable]

7432

\[ {}\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

7433

\[ {}5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7434

\[ {}{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_quadrature]

7449

\[ {}y^{\prime } = 2 x \]

[_quadrature]

7450

\[ {}x y^{\prime } = 2 y \]

[_separable]

7451

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

7452

\[ {}y^{\prime } = k y \]

[_quadrature]

7455

\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-y^{2} x^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7456

\[ {}x y^{\prime } = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

7457

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7458

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7460

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7461

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

7462

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

7463

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

7464

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

7465

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

7466

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \]

[_quadrature]

7467

\[ {}y^{\prime } \left (x^{2}+1\right ) = \arctan \left (x \right ) \]

[_quadrature]

7468

\[ {}x y^{\prime } = 1 \]

[_quadrature]

7469

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

7470

\[ {}\sin \left (x \right ) y^{\prime } = 1 \]

[_quadrature]

7471

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

7472

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

7473

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

7474

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

7475

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

7476

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7477

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

7478

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

7479

\[ {}y^{\prime } = 1+2 x y \]

[_linear]

7481

\[ {}y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7483

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

7484

\[ {}y^{\prime } = 4 x y \]

[_separable]

7485

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

7486

\[ {}y^{\prime } \left (x^{2}+1\right )+1+y^{2} = 0 \]

[_separable]

7487

\[ {}y \ln \left (y\right )-x y^{\prime } = 0 \]

[_separable]

7489

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

7490

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

7491

\[ {}x y y^{\prime } = y-1 \]

[_separable]

7492

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

7493

\[ {}y y^{\prime } = x +1 \]
i.c.

[_separable]

7494

\[ {}x^{2} y^{\prime } = y \]
i.c.

[_separable]

7495

\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]
i.c.

[_separable]

7496

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

7497

\[ {}y^{\prime } = y^{2} x^{2} \]
i.c.

[_separable]

7498

\[ {}\left (1+y\right ) y^{\prime } = -x^{2}+1 \]
i.c.

[_separable]

7517

\[ {}x y^{\prime }+y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7518

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

7519

\[ {}x y^{\prime }+y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7520

\[ {}y^{\prime }+x y = x y^{4} \]

[_separable]

7521

\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7522

\[ {}y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

7524

\[ {}x y^{\prime } = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

7525

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

7526

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7527

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

7528

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

7530

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

7531

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7532

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

7533

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

7534

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

7535

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 y^{2} x^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7536

\[ {}\frac {y}{1-y^{2} x^{2}}+\frac {x y^{\prime }}{1-y^{2} x^{2}} = 1 \]

[_exact, _rational, _Riccati]

7537

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

7538

\[ {}\frac {x y^{\prime }+y}{1-y^{2} x^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

7539

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7541

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

7542

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

7543

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

7544

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7545

\[ {}\frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

7546

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7547

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7548

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7550

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

7552

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7553

\[ {}x y^{\prime } = 2 x -6 y \]

[_linear]

7555

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7556

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7561

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

7562

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7563

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7564

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7569

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7570

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

7571

\[ {}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7572

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7573

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7574

\[ {}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

7575

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7576

\[ {}y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7577

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

7578

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7579

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

7593

\[ {}x y^{\prime }+y = x \]

[_linear]

7594

\[ {}x^{2} y^{\prime }+y = x^{2} \]

[_linear]

7595

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7598

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7599

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

7600

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

7601

\[ {}-y+x y^{\prime } = 2 x \]
i.c.

[_linear]

7602

\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \]
i.c.

[_linear]

7603

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

7605

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7607

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

7608

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

7745

\[ {}y^{\prime }+y = \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

7749

\[ {}y^{\prime } = 2 x y \]

[_separable]

7751

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

7753

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

7755

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

7757

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

7759

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

7761

\[ {}x y^{\prime } = y \]

[_separable]

7763

\[ {}x^{2} y^{\prime } = y \]

[_separable]

7765

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

7766

\[ {}y^{\prime }+\frac {y}{x} = x \]

[_linear]

7770

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

7891

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

8111

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

[_separable]

8112

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

[_quadrature]

8113

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

[_separable]

8114

\[ {}x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]

[_separable]

8115

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8116

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

[_quadrature]

8117

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

[_quadrature]

8118

\[ {}{y^{\prime }}^{2}-y^{2} x^{2} = 0 \]

[_separable]

8119

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8120

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8121

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+x^{3} y^{3} = 0 \]

[_separable]

8122

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 y^{\prime } \left (x -y\right )+2 x -5 y = 0 \]

[_quadrature]

8123

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8124

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

8125

\[ {}\left (y^{2}+x^{2}\right )^{2} {y^{\prime }}^{2} = 4 y^{2} x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8126

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+\left (y-x \right ) y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8127

\[ {}x y \left (y^{2}+x^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8128

\[ {}x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8129

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8145

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

8164

\[ {}y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

8210

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8215

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

8221

\[ {}x {y^{\prime }}^{2}-y^{\prime } \left (x^{2}+1\right )+x = 0 \]

[_quadrature]

8226

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

8229

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

8373

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

8374

\[ {}y^{\prime } \left (x^{2}+1\right )+y^{2} = -1 \]
i.c.

[_separable]

8375

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

8376

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

8377

\[ {}y^{\prime } = \frac {2 x -y}{4 y+x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8378

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8379

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

8380

\[ {}x y-1+x^{2} y^{\prime } = 0 \]

[_linear]

8389

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

[_separable]

8390

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

[_separable]

8391

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

[_separable]

8392

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

[_separable]

8393

\[ {}y^{\prime } = 1+y \]

[_quadrature]

8394

\[ {}y^{\prime } = x +1 \]

[_quadrature]

8395

\[ {}y^{\prime } = x \]

[_quadrature]

8396

\[ {}y^{\prime } = y \]

[_quadrature]

8398

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

8399

\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \]

[_linear]

8400

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

8401

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

8402

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

8403

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

8404

\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8406

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

8410

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8420

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

8421

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

8422

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

8434

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

8465

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

8468

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

8470

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8472

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

8536

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

8565

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

8628

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

8656

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

8662

\[ {}y^{\prime } = a \]

[_quadrature]

8663

\[ {}y^{\prime } = x \]

[_quadrature]

8664

\[ {}y^{\prime } = 1 \]

[_quadrature]

8665

\[ {}y^{\prime } = a x \]

[_quadrature]

8666

\[ {}y^{\prime } = a x y \]

[_separable]

8667

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8668

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8669

\[ {}y^{\prime } = y \]

[_quadrature]

8670

\[ {}y^{\prime } = b y \]

[_quadrature]

8673

\[ {}c y^{\prime } = a \]

[_quadrature]

8674

\[ {}c y^{\prime } = a x \]

[_quadrature]

8675

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

8676

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

8677

\[ {}c y^{\prime } = y \]

[_quadrature]

8678

\[ {}c y^{\prime } = b y \]

[_quadrature]

8683

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \]

[_rational, _Bernoulli]

8686

\[ {}y^{\prime } = \sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

8688

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

[_linear]

8697

\[ {}x y^{\prime } = 1 \]

[_quadrature]

8698

\[ {}x y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

8726

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

8838

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

8839

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

8847

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

9692

\[ {}y^{\prime }+a y-c \,{\mathrm e}^{b x} = 0 \]

[[_linear, ‘class A‘]]

9693

\[ {}y^{\prime }+a y-b \sin \left (c x \right ) = 0 \]

[[_linear, ‘class A‘]]

9694

\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

9695

\[ {}y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{2 x} = 0 \]

[_linear]

9696

\[ {}y^{\prime }+y \cos \left (x \right )-\frac {\sin \left (2 x \right )}{2} = 0 \]

[_linear]

9697

\[ {}y^{\prime }+y \cos \left (x \right )-{\mathrm e}^{-\sin \left (x \right )} = 0 \]

[_linear]

9698

\[ {}y^{\prime }+y \tan \left (x \right )-\sin \left (2 x \right ) = 0 \]

[_linear]

9699

\[ {}y^{\prime }-\left (\sin \left (\ln \left (x \right )\right )+\cos \left (\ln \left (x \right )\right )+a \right ) y = 0 \]

[_separable]

9700

\[ {}y^{\prime }+f^{\prime }\left (x \right ) y-f \left (x \right ) f^{\prime }\left (x \right ) = 0 \]

[_linear]

9701

\[ {}y^{\prime }+f \left (x \right ) y-g \left (x \right ) = 0 \]

[_linear]

9702

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

9707

\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \]

[_quadrature]

9713

\[ {}y^{\prime }+y^{2} a -b = 0 \]

[_quadrature]

9716

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

9719

\[ {}y^{\prime }-x y^{2}-3 x y = 0 \]

[_separable]

9721

\[ {}y^{\prime }-a \,x^{n} \left (1+y^{2}\right ) = 0 \]

[_separable]

9725

\[ {}y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right ) = 0 \]

[_separable]

9729

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

9731

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _Abel]

9749

\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \]

[_quadrature]

9750

\[ {}y^{\prime }-\frac {\sqrt {y^{2}-1}}{\sqrt {x^{2}-1}} = 0 \]

[_separable]

9751

\[ {}y^{\prime }-\frac {\sqrt {x^{2}-1}}{\sqrt {y^{2}-1}} = 0 \]

[_separable]

9754

\[ {}y^{\prime }-\sqrt {\frac {y^{2} a +b y+c}{x^{2} a +b x +c}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9755

\[ {}y^{\prime }-\sqrt {\frac {y^{3}+1}{x^{3}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9757

\[ {}y^{\prime }-\frac {\sqrt {1-y^{4}}}{\sqrt {-x^{4}+1}} = 0 \]

[_separable]

9758

\[ {}y^{\prime }-\sqrt {\frac {a y^{4}+b y^{2}+1}{a \,x^{4}+b \,x^{2}+1}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9759

\[ {}y^{\prime }-\sqrt {\left (b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0} \right ) \left (a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} \right )} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9760

\[ {}y^{\prime }-\sqrt {\frac {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9761

\[ {}y^{\prime }-\sqrt {\frac {b_{4} y^{4}+b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}}{a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9763

\[ {}y^{\prime }-\left (\frac {a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}{a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}}\right )^{{2}/{3}} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9766

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

9779

\[ {}x y^{\prime }-\sqrt {a^{2}-x^{2}} = 0 \]

[_quadrature]

9780

\[ {}x y^{\prime }+y-x \sin \left (x \right ) = 0 \]

[_linear]

9781

\[ {}x y^{\prime }-y-\frac {x}{\ln \left (x \right )} = 0 \]

[_linear]

9782

\[ {}x y^{\prime }-y-x^{2} \sin \left (x \right ) = 0 \]

[_linear]

9783

\[ {}x y^{\prime }-y-\frac {x \cos \left (\ln \left (\ln \left (x \right )\right )\right )}{\ln \left (x \right )} = 0 \]

[_linear]

9784

\[ {}x y^{\prime }+a y+b \,x^{n} = 0 \]

[_linear]

9786

\[ {}x y^{\prime }-y^{2}+1 = 0 \]

[_separable]

9791

\[ {}x y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9798

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

9799

\[ {}x y^{\prime }-y \left (2 y \ln \left (x \right )-1\right ) = 0 \]

[_Bernoulli]

9800

\[ {}x y^{\prime }+f \left (x \right ) \left (y^{2}-x^{2}\right )-y = 0 \]

[[_homogeneous, ‘class D‘], _Riccati]

9807

\[ {}x y^{\prime }-y \ln \left (y\right ) = 0 \]

[_separable]

9808

\[ {}x y^{\prime }-y \left (\ln \left (x y\right )-1\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

9811

\[ {}x y^{\prime }+\left (\sin \left (y\right )-3 x^{2} \cos \left (y\right )\right ) \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

9819

\[ {}2 x y^{\prime }-y-2 x^{3} = 0 \]

[_linear]

9820

\[ {}\left (2 x +1\right ) y^{\prime }-4 \,{\mathrm e}^{-y}+2 = 0 \]

[_separable]

9821

\[ {}3 x y^{\prime }-3 x \ln \left (x \right ) y^{4}-y = 0 \]

[_Bernoulli]

9822

\[ {}x^{2} y^{\prime }+y-x = 0 \]

[_linear]

9823

\[ {}x^{2} y^{\prime }-y+x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_linear]

9824

\[ {}x^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

[_separable]

9826

\[ {}x^{2} y^{\prime }-y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9829

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+4 x y+2 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9830

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

9832

\[ {}x^{2} \left (y^{\prime }+y^{2} a \right )-b = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

9837

\[ {}y^{\prime } \left (x^{2}+1\right )+x y-1 = 0 \]

[_linear]

9838

\[ {}y^{\prime } \left (x^{2}+1\right )+x y-x \left (x^{2}+1\right ) = 0 \]

[_linear]

9839

\[ {}y^{\prime } \left (x^{2}+1\right )+2 x y-2 x^{2} = 0 \]

[_linear]

9842

\[ {}\left (x^{2}-1\right ) y^{\prime }-x y+a = 0 \]

[_linear]

9843

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

[_linear]

9847

\[ {}\left (x^{2}-1\right ) y^{\prime }+a x y^{2}+x y = 0 \]

[_separable]

9848

\[ {}\left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right ) = 0 \]

[_separable]

9850

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime }+3 x y-8 y+x^{2} = 0 \]

[_linear]

9854

\[ {}x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (1+4 x \right ) y+4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9860

\[ {}x^{3} y^{\prime }-y^{2}-x^{2} y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9863

\[ {}x \left (x^{2}+1\right ) y^{\prime }+x^{2} y = 0 \]

[_separable]

9864

\[ {}x \left (x^{2}-1\right ) y^{\prime }-\left (2 x^{2}-1\right ) y+a \,x^{3} = 0 \]

[_linear]

9872

\[ {}\left (2 x^{4}-x \right ) y^{\prime }-2 \left (x^{3}-1\right ) y = 0 \]

[_separable]

9881

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y-\sqrt {a^{2}+x^{2}}+x = 0 \]

[_linear]

9882

\[ {}x y^{\prime } \ln \left (x \right )+y-a x \left (\ln \left (x \right )+1\right ) = 0 \]

[_linear]

9885

\[ {}y^{\prime } \cos \left (x \right )+y+\left (\sin \left (x \right )+1\right ) \cos \left (x \right ) = 0 \]

[_linear]

9887

\[ {}\sin \left (x \right ) \cos \left (x \right ) y^{\prime }-y-\sin \left (x \right )^{3} = 0 \]

[_linear]

9889

\[ {}\left (a \sin \left (x \right )^{2}+b \right ) y^{\prime }+a y \sin \left (2 x \right )+A x \left (a \sin \left (x \right )^{2}+c \right ) = 0 \]

[_linear]

9896

\[ {}y y^{\prime }+y^{2}+4 x \left (x +1\right ) = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9897

\[ {}y y^{\prime }+y^{2} a -b \cos \left (x +c \right ) = 0 \]

[_Bernoulli]

9898

\[ {}y y^{\prime }-\sqrt {y^{2} a +b} = 0 \]

[_quadrature]

9899

\[ {}y y^{\prime }+x y^{2}-4 x = 0 \]

[_separable]

9906

\[ {}\left (y-x^{2}\right ) y^{\prime }-x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

9907

\[ {}\left (y-x^{2}\right ) y^{\prime }+4 x y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9909

\[ {}2 y y^{\prime }-x y^{2}-x^{3} = 0 \]

[_rational, _Bernoulli]

9912

\[ {}\left (2 y-x \right ) y^{\prime }-y-2 x = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9916

\[ {}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9918

\[ {}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9921

\[ {}x^{2}+y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9922

\[ {}x y y^{\prime }-y^{2}+a \,x^{3} \cos \left (x \right ) = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

9924

\[ {}\left (x y+a \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9928

\[ {}\left (x y-x^{2}\right ) y^{\prime }+y^{2}-3 x y-2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9929

\[ {}2 x y y^{\prime }-y^{2}+a x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

9930

\[ {}2 x y y^{\prime }-y^{2}+x^{2} a = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9931

\[ {}2 x y y^{\prime }+2 y^{2}+1 = 0 \]

[_separable]

9932

\[ {}x \left (2 y+x -1\right ) y^{\prime }-y \left (y+2 x +1\right ) = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9933

\[ {}y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9935

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9937

\[ {}\left (6 x y+x^{2}+3\right ) y^{\prime }+3 y^{2}+2 x y+2 x = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9940

\[ {}\left (x^{2} y-1\right ) y^{\prime }+x y^{2}-1 = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9943

\[ {}x \left (x y-2\right ) y^{\prime }+x^{2} y^{3}+x y^{2}-2 y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9944

\[ {}x \left (x y-3\right ) y^{\prime }+x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9945

\[ {}x^{2} \left (y-1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[_separable]

9947

\[ {}2 x^{2} y y^{\prime }+y^{2}-2 x^{3}-x^{2} = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

9948

\[ {}2 x^{2} y y^{\prime }-y^{2}-x^{2} {\mathrm e}^{x -\frac {1}{x}} = 0 \]

[_Bernoulli]

9949

\[ {}\left (x +2 x^{2} y\right ) y^{\prime }-x^{2} y^{3}+2 x y^{2}+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9950

\[ {}\left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9952

\[ {}2 x^{3}+y y^{\prime }+3 y^{2} x^{2}+7 = 0 \]

[_rational, _Bernoulli]

9956

\[ {}y y^{\prime } \sin \left (x \right )^{2}+y^{2} \cos \left (x \right ) \sin \left (x \right )-1 = 0 \]

[_exact, _Bernoulli]

9957

\[ {}f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0 \]

[_Bernoulli]

9959

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

9960

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9962

\[ {}\left (y^{2}+x^{2}+a \right ) y^{\prime }+2 x y = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9963

\[ {}\left (y^{2}+x^{2}+a \right ) y^{\prime }+2 x y+x^{2}+b = 0 \]

[_exact, _rational]

9964

\[ {}\left (x^{2}+y^{2}+x \right ) y^{\prime }-y = 0 \]

[_rational]

9965

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9966

\[ {}\left (y^{2}+x^{4}\right ) y^{\prime }-4 x^{3} y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9967

\[ {}\left (y^{2}+4 \sin \left (x \right )\right ) y^{\prime }-\cos \left (x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9972

\[ {}3 \left (y^{2}-x^{2}\right ) y^{\prime }+2 y^{3}-6 x \left (x +1\right ) y-3 \,{\mathrm e}^{x} = 0 \]

[‘y=_G(x,y’)‘]

9973

\[ {}\left (4 y^{2}+x^{2}\right ) y^{\prime }-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9974

\[ {}\left (4 y^{2}+2 x y+3 x^{2}\right ) y^{\prime }+y^{2}+6 x y+2 x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9977

\[ {}\left (6 y^{2}-3 x^{2} y+1\right ) y^{\prime }-3 x y^{2}+x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9978

\[ {}\left (6 y-x \right )^{2} y^{\prime }-6 y^{2}+2 x y+a = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9979

\[ {}\left (y^{2} a +2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

9983

\[ {}x \left (y^{2}+x^{2}-a \right ) y^{\prime }-y \left (y^{2}+x^{2}+a \right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9984

\[ {}x \left (y^{2}+x y-x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9987

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9988

\[ {}\left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 x y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

9989

\[ {}6 x y^{2} y^{\prime }+x +2 y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

9990

\[ {}\left (x^{2}+6 x y^{2}\right ) y^{\prime }-y \left (3 y^{2}-x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9991

\[ {}\left (y^{2} x^{2}+x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9992

\[ {}\left (x y-1\right )^{2} x y^{\prime }+\left (1+y^{2} x^{2}\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9993

\[ {}\left (10 x^{3} y^{2}+x^{2} y+2 x \right ) y^{\prime }+5 x^{2} y^{3}+x y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

9994

\[ {}\left (y^{3}-3 x \right ) y^{\prime }-3 y+x^{2} = 0 \]

[_exact, _rational]

9995

\[ {}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9996

\[ {}\left (y^{2}+x^{2}+a \right ) y y^{\prime }+\left (y^{2}+x^{2}-a \right ) x = 0 \]

[_exact, _rational]

9997

\[ {}2 y^{3} y^{\prime }+x y^{2} = 0 \]

[_separable]

9998

\[ {}\left (2 y^{3}+y\right ) y^{\prime }-2 x^{3}-x = 0 \]

[_separable]

9999

\[ {}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10000

\[ {}\left (20 y^{3}-3 x y^{2}+6 x^{2} y+3 x^{3}\right ) y^{\prime }-y^{3}+6 x y^{2}+9 x^{2} y+4 x^{3} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10003

\[ {}x y^{3} y^{\prime }+y^{4}-x \sin \left (x \right ) = 0 \]

[_Bernoulli]

10004

\[ {}\left (2 x y^{3}-x^{4}\right ) y^{\prime }-y^{4}+2 x^{3} y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10005

\[ {}\left (2 x y^{3}+y\right ) y^{\prime }+2 y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10006

\[ {}\left (2 x y^{3}+x y+x^{2}\right ) y^{\prime }-x y+y^{2} = 0 \]

[_rational]

10007

\[ {}\left (3 x y^{3}-4 x y+y\right ) y^{\prime }+y^{2} \left (y^{2}-2\right ) = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10008

\[ {}\left (7 x y^{3}+y-5 x \right ) y^{\prime }+y^{4}-5 y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10011

\[ {}\left (10 x^{2} y^{3}-3 y^{2}-2\right ) y^{\prime }+5 x y^{4}+x = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10012

\[ {}\left (a x y^{3}+c \right ) x y^{\prime }+\left (b \,x^{3} y+c \right ) y = 0 \]

[_rational]

10013

\[ {}\left (2 x^{3} y^{3}-x \right ) y^{\prime }+2 x^{3} y^{3}-y = 0 \]

[_rational]

10021

\[ {}\left (\sqrt {x y}-1\right ) x y^{\prime }-\left (\sqrt {x y}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘]]

10024

\[ {}\sqrt {y^{2}-1}\, y^{\prime }-\sqrt {x^{2}-1} = 0 \]

[_separable]

10025

\[ {}\left (\sqrt {1+y^{2}}+a x \right ) y^{\prime }+\sqrt {x^{2}+1}+a y = 0 \]

[_exact]

10029

\[ {}\left (\frac {\operatorname {e1} \left (x +a \right )}{\left (y^{2}+\left (x +a \right )^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (y^{2}+\left (x +a \right )^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) = 0 \]

unknown

10030

\[ {}\left (x \,{\mathrm e}^{y}+{\mathrm e}^{x}\right ) y^{\prime }+{\mathrm e}^{y}+y \,{\mathrm e}^{x} = 0 \]

[_exact]

10031

\[ {}x \left (3 \,{\mathrm e}^{x y}+2 \,{\mathrm e}^{-x y}\right ) \left (x y^{\prime }+y\right )+1 = 0 \]

[[_homogeneous, ‘class G‘]]

10032

\[ {}\left (\ln \left (y\right )+x \right ) y^{\prime }-1 = 0 \]

[[_1st_order, _with_exponential_symmetries]]

10033

\[ {}\left (\ln \left (y\right )+2 x -1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

10034

\[ {}x \left (2 x^{2} y \ln \left (y\right )+1\right ) y^{\prime }-2 y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10035

\[ {}x \left (y \ln \left (x y\right )+y-a x \right ) y^{\prime }-y \left (a x \ln \left (x y\right )-y+a x \right ) = 0 \]

[‘y=_G(x,y’)‘]

10036

\[ {}y^{\prime } \left (\sin \left (x \right )+1\right ) \sin \left (y\right )+\cos \left (x \right ) \left (\cos \left (y\right )-1\right ) = 0 \]

[_separable]

10037

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

10041

\[ {}y^{\prime } \left (\cos \left (y\right )-\sin \left (\alpha \right ) \sin \left (x \right )\right ) \cos \left (y\right )+\left (\cos \left (x \right )-\sin \left (\alpha \right ) \sin \left (y\right )\right ) \cos \left (x \right ) = 0 \]

unknown

10042

\[ {}x \cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 0 \]

[_separable]

10043

\[ {}\left (x \sin \left (y\right )-1\right ) y^{\prime }+\cos \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10044

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

10045

\[ {}\left (x^{2} \cos \left (y\right )+2 y \sin \left (x \right )\right ) y^{\prime }+2 x \sin \left (y\right )+y^{2} \cos \left (x \right ) = 0 \]

[_exact]

10047

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

10049

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

[_quadrature]

10050

\[ {}\left (x \sin \left (x y\right )+\cos \left (x +y\right )-\sin \left (y\right )\right ) y^{\prime }+y \sin \left (x y\right )+\cos \left (x +y\right )+\cos \left (x \right ) = 0 \]

[_exact]

10051

\[ {}\left (x^{2} y \sin \left (x y\right )-4 x \right ) y^{\prime }+x y^{2} \sin \left (x y\right )-y = 0 \]

[[_homogeneous, ‘class G‘]]

10052

\[ {}\left (-y+x y^{\prime }\right ) \cos \left (\frac {y}{x}\right )^{2}+x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10053

\[ {}\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

10054

\[ {}\left (y f \left (y^{2}+x^{2}\right )-x \right ) y^{\prime }+y+x f \left (y^{2}+x^{2}\right ) = 0 \]

[[_1st_order, _with_linear_symmetries]]

10080

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

10084

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

10122

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

10126

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

10128

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

10130

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

10132

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10136

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

10150

\[ {}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

10158

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

10168

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

10192

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

10213

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10223

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

10226

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

10227

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 x y^{\prime }-x = 0 \]

[_quadrature]

10338

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10343

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{3}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10360

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{2}+x^{2}}{2 x} \]

[‘y=_G(x,y’)‘]

10370

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (x \left (x +1\right )\right ) y x^{4}-\ln \left (x \left (x +1\right )\right ) x^{3}\right )}{x} \]

[_Bernoulli]

10374

\[ {}y^{\prime } = \frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10375

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

10378

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \]

[‘y=_G(x,y’)‘]

10392

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x +x^{3}+x^{4}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10415

\[ {}y^{\prime } = \frac {\left (x^{3}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10416

\[ {}y^{\prime } = \frac {y \left (x -y\right )}{x \left (x -y^{3}\right )} \]

[_rational]

10435

\[ {}y^{\prime } = \frac {y \left (x +y\right )}{x \left (x +y^{3}\right )} \]

[_rational]

10437

\[ {}y^{\prime } = \frac {\left (x^{2}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10438

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10450

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right ) x +\ln \left (y\right )+x \right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10452

\[ {}y^{\prime } = \frac {y \left (-1-\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right )+\ln \left (\frac {\left (x -1\right ) \left (x +1\right )}{x}\right ) x y\right )}{x} \]

[_Bernoulli]

10468

\[ {}y^{\prime } = \frac {\left (x^{4}+x^{3}+x +3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

10480

\[ {}y^{\prime } = -\frac {y \left (x y+1\right )}{x \left (x y+1-y\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

10484

\[ {}y^{\prime } = \frac {y \left (-1-\cosh \left (\frac {x +1}{x -1}\right ) x +\cosh \left (\frac {x +1}{x -1}\right ) x^{2} y-\cosh \left (\frac {x +1}{x -1}\right ) x^{2}+\cosh \left (\frac {x +1}{x -1}\right ) x^{3} y\right )}{x} \]

[_Bernoulli]

10486

\[ {}y^{\prime } = \frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-{\mathrm e}^{\frac {x +1}{x -1}} x^{2}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \]

[_Bernoulli]

10505

\[ {}y^{\prime } = \frac {y}{x \left (-1+x y+x y^{3}+x y^{4}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

10508

\[ {}y^{\prime } = \frac {y \left (x y+1\right )}{x \left (-x y-1+x^{3} y^{4}\right )} \]

[_rational]

10510

\[ {}y^{\prime } = \frac {y \left (x +y\right )}{x \left (x +y+y^{3}+y^{4}\right )} \]

[_rational]

10517

\[ {}y^{\prime } = \frac {y \left (x -y\right )}{x \left (x -y-y^{3}-y^{4}\right )} \]

[_rational]

10540

\[ {}y^{\prime } = \frac {14 x y+12+2 x +x^{3} y^{3}+6 y^{2} x^{2}}{x^{2} \left (x y+2+x \right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10547

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+x \cos \left (2 y\right )+\cos \left (2 y\right ) x^{3}+\cos \left (2 y\right ) x^{4}+x +x^{3}+x^{4}}{2 x} \]

[‘y=_G(x,y’)‘]

10558

\[ {}y^{\prime } = \frac {-30 x^{3} y+12 x^{6}+70 x^{{7}/{2}}-30 x^{3}-25 \sqrt {x}\, y+50 x -25 \sqrt {x}-25}{5 \left (-5 y+2 x^{3}+10 \sqrt {x}-5\right ) x} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

10573

\[ {}y^{\prime } = \frac {y a^{2} x +a +a^{2} x +y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1}{a^{2} x^{2} \left (a x y+1+a x \right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

10587

\[ {}y^{\prime } = \frac {\left (y-a \ln \left (y\right ) x +x^{2}\right ) y}{\left (-y \ln \left (y\right )-y \ln \left (x \right )-y+a x \right ) x} \]

[NONE]

10645

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10646

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{2} \sin \left (\frac {y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10651

\[ {}y^{\prime } = \frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \]

[[_homogeneous, ‘class D‘]]

10654

\[ {}y^{\prime } = \frac {-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

10655

\[ {}y^{\prime } = \frac {y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right ) x +y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )-\sin \left (\frac {y}{x}\right ) y x -y \sin \left (\frac {y}{x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x}{2 \cos \left (\frac {y}{x}\right ) \sin \left (\frac {y}{2 x}\right ) x \cos \left (\frac {y}{2 x}\right ) \left (x +1\right )} \]

[[_homogeneous, ‘class D‘]]

10666

\[ {}y^{\prime } = \frac {x^{3} y^{3}+6 y^{2} x^{2}+12 x y+8+2 x}{x^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10667

\[ {}y^{\prime } = \frac {y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1+a^{2} x}{x^{3} a^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

11677

\[ {}y^{\prime } = f \left (x \right ) \]

[_quadrature]

11678

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

11679

\[ {}y^{\prime } = f \left (x \right ) g \left (y\right ) \]

[_separable]

11680

\[ {}g \left (x \right ) y^{\prime } = f_{1} \left (x \right ) y+f_{0} \left (x \right ) \]

[_linear]

11695

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

11731

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}+b x y+c \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

11841

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y-a b x \ln \left (x \right )^{n +1} y+b \ln \left (x \right )+b \]

[_linear]

12002

\[ {}y y^{\prime }-y = A \]

[_quadrature]

12170

\[ {}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12173

\[ {}\left (y+A \,x^{n}+a \right ) y^{\prime }+n A \,x^{n -1} y+k \,x^{m}+b = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12474

\[ {}\frac {1+2 x y}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12475

\[ {}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12476

\[ {}\frac {1}{\sqrt {y^{2}+x^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {y^{2}+x^{2}}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12477

\[ {}y+x +x y^{\prime } = 0 \]

[_linear]

12478

\[ {}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12481

\[ {}2 \left (1-y^{2}\right ) x y+\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12485

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12487

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

[_separable]

12488

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12492

\[ {}y+2 x y^{2}-x^{2} y^{3}+2 x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

12493

\[ {}2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12494

\[ {}y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12495

\[ {}y^{\prime }+y \cot \left (x \right ) = \sec \left (x \right ) \]

[_linear]

12496

\[ {}x y^{\prime }+\left (x +1\right ) y = {\mathrm e}^{x} \]

[_linear]

12497

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

12498

\[ {}\left (x^{3}+x \right ) y^{\prime }+4 x^{2} y = 2 \]

[_linear]

12499

\[ {}x^{2} y^{\prime }+\left (-2 x +1\right ) y = x^{2} \]

[_linear]

12501

\[ {}y y^{\prime }+x y^{2} = x \]

[_separable]

12502

\[ {}\sin \left (y\right ) y^{\prime }+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

[_separable]

12506

\[ {}y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0 \]

[_separable]

12508

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12509

\[ {}\frac {-y+x y^{\prime }}{\sqrt {x^{2}-y^{2}}} = x y^{\prime } \]

[‘y=_G(x,y’)‘]

12510

\[ {}x +y-y^{\prime } \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12511

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12512

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12513

\[ {}-y+x y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

12514

\[ {}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12515

\[ {}2 x +\left (x^{2}+y^{2}+2 y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12516

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12517

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

[_separable]

12519

\[ {}x y^{\prime }-y+2 x^{2} y-x^{3} = 0 \]

[_linear]

12520

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

12521

\[ {}x +y y^{\prime }+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12525

\[ {}y^{\prime }-x^{2} y = x^{5} \]

[_linear]

12527

\[ {}x y^{\prime }+y+x^{4} y^{4} {\mathrm e}^{x} = 0 \]

[_Bernoulli]

12528

\[ {}\left (1-x \right ) y+x \left (1-y\right ) y^{\prime } = 0 \]

[_separable]

12529

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12532

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12534

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

12535

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

12536

\[ {}x y^{2} \left (3 y+x y^{\prime }\right )-2 y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12537

\[ {}y^{\prime } \left (x^{2}+1\right )+y = \arctan \left (x \right ) \]

[_linear]

12538

\[ {}5 x y-3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

12539

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

12540

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

12541

\[ {}\left (1-x \right ) y-\left (1+y\right ) x y^{\prime } = 0 \]

[_separable]

12542

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]

[_separable]

12545

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

12546

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

12549

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

12552

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

12557

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

12585

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

[_separable]

12591

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

[_quadrature]

12701

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

12702

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

12703

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

12705

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

12706

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

12707

\[ {}2 t x^{\prime } = x \]

[_separable]

12710

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

12712

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

12713

\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \]
i.c.

[_quadrature]

12715

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

12716

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

12717

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

12718

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

12720

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

12721

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

12722

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

12723

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

12724

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12725

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

12726

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

12727

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

12728

\[ {}x^{\prime } = \frac {2 x}{t +1} \]

[_separable]

12729

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

12730

\[ {}\left (2 u+1\right ) u^{\prime }-t -1 = 0 \]

[_separable]

12731

\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

[_separable]

12732

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

12733

\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \]

[_separable]

12734

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

12736

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

12737

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

12738

\[ {}x^{\prime } = x \left (x+4\right ) \]
i.c.

[_quadrature]

12739

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

12740

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

12742

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

12743

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

12744

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

12745

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

12746

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 x t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12747

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

12749

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12750

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

12751

\[ {}x^{\prime } = 2 t^{3} x-6 \]

[_linear]

12754

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

[_linear]

12757

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

[_linear]

12758

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

12759

\[ {}x^{\prime }+2 x t = {\mathrm e}^{-t^{2}} \]

[_linear]

12760

\[ {}t x^{\prime } = -x+t^{2} \]

[_linear]

12761

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{t b} \]

[[_linear, ‘class A‘]]

12762

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 x t +6 t \]

[_separable]

12763

\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \]
i.c.

[_linear]

12764

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

12765

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]
i.c.

[_linear]

12766

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

12767

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

12768

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

12769

\[ {}y^{\prime }+a y = \sqrt {t +1} \]

[[_linear, ‘class A‘]]

12770

\[ {}x^{\prime } = 2 x t \]

[_separable]

12771

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]
i.c.

[_linear]

12774

\[ {}x^{\prime } = a x+b \]

[_quadrature]

12775

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

12776

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12778

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

[_separable]

12780

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

12782

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12783

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

[_exact]

12784

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

[NONE]

12785

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

[_separable]

12786

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

[_separable]

12787

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

[_separable]

12922

\[ {}y^{\prime }+y = x +1 \]

[[_linear, ‘class A‘]]

12926

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

12927

\[ {}x y^{\prime }+y = x^{3} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12928

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

12929

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

12934

\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

12938

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

12939

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

12945

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]
i.c.

[_separable]

12946

\[ {}y^{\prime } = \frac {y^{2}}{-2+x} \]
i.c.

[_separable]

12947

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

12948

\[ {}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12949

\[ {}y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

12950

\[ {}2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12952

\[ {}6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12953

\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

12954

\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12955

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

[_separable]

12956

\[ {}\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12957

\[ {}2 x y-3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

12958

\[ {}3 y^{2} x^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

12959

\[ {}2 y \sin \left (x \right ) \cos \left (x \right )+y^{2} \sin \left (x \right )+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

12960

\[ {}y \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 x y\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

12961

\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

12962

\[ {}\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]
i.c.

[[_homogeneous, ‘class G‘], _exact, _rational]

12963

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

12964

\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12965

\[ {}y+x \left (y^{2}+x^{2}\right )^{2}+\left (y \left (y^{2}+x^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

12966

\[ {}4 x y+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

12967

\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

[_separable]

12970

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

[_separable]

12971

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

[_separable]

12972

\[ {}\left (4+x \right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

[_separable]

12973

\[ {}x +y-x y^{\prime } = 0 \]

[_linear]

12974

\[ {}2 x y+3 y^{2}-\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12977

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12978

\[ {}x^{3}+y^{2} \sqrt {y^{2}+x^{2}}-x y \sqrt {y^{2}+x^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

12980

\[ {}y+2+y \left (4+x \right ) y^{\prime } = 0 \]
i.c.

[_separable]

12982

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

12983

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

12985

\[ {}3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12986

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12987

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12988

\[ {}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

12989

\[ {}2 x^{2}+2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

12990

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

[_linear]

12991

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

[_linear]

12992

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

12993

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

12994

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

12995

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

12996

\[ {}x y^{\prime }+\frac {\left (2 x +1\right ) y}{x +1} = x -1 \]

[_linear]

12997

\[ {}\left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y = x -1 \]

[_linear]

12998

\[ {}x y^{\prime }+x y+y-1 = 0 \]

[_linear]

12999

\[ {}y+\left (x y^{2}+x -y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

13000

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right ) \]

[_linear]

13001

\[ {}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0 \]

[_linear]

13002

\[ {}\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (\sin \left (x \right )+1\right ) y^{\prime } = 0 \]

[_linear]

13003

\[ {}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[_linear]

13004

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

13005

\[ {}x y^{\prime }+y = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13006

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

13007

\[ {}x^{\prime }+\frac {\left (t +1\right ) x}{2 t} = \frac {t +1}{x t} \]

[_separable]

13008

\[ {}x y^{\prime }-2 y = 2 x^{4} \]
i.c.

[_linear]

13009

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

13010

\[ {}{\mathrm e}^{x} \left (y-3 \left (1+{\mathrm e}^{x}\right )^{2}\right )+\left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]
i.c.

[_linear]

13011

\[ {}2 x \left (1+y\right )-y^{\prime } \left (x^{2}+1\right ) = 0 \]
i.c.

[_separable]

13012

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2} \]
i.c.

[_linear]

13013

\[ {}x^{\prime }-x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

13014

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13015

\[ {}x y^{\prime }+y = \left (x y\right )^{{3}/{2}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

13020

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

13021

\[ {}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right ) \]

[[_linear, ‘class A‘]]

13022

\[ {}\cos \left (y\right ) y^{\prime }+\frac {\sin \left (y\right )}{x} = 1 \]

[‘y=_G(x,y’)‘]

13023

\[ {}\left (1+y\right ) y^{\prime }+x \left (2 y+y^{2}\right ) = x \]

[_separable]

13027

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

13028

\[ {}\left (3 y^{2} x^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

13029

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

13030

\[ {}x^{2}-2 y+x y^{\prime } = 0 \]

[_linear]

13032

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

13033

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

13035

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13036

\[ {}\left (x +1\right ) y^{\prime }+x y = {\mathrm e}^{-x} \]

[_linear]

13038

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]

[_separable]

13039

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

13040

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13041

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13042

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

13043

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

13044

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

13045

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

13047

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

13051

\[ {}5 x y+4 y^{2}+1+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13052

\[ {}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

13053

\[ {}y^{2} \left (x +1\right )+y+\left (1+2 x y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13054

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

13055

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13057

\[ {}5 x +2 y+1+\left (y+2 x +1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13061

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13380

\[ {}x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

[_quadrature]

13381

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

[_quadrature]

13382

\[ {}u^{\prime } = 4 t \ln \left (t \right ) \]

[_quadrature]

13383

\[ {}z^{\prime } = x \,{\mathrm e}^{-2 x} \]

[_quadrature]

13384

\[ {}T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

[_quadrature]

13385

\[ {}x^{\prime } = \sec \left (t \right )^{2} \]
i.c.

[_quadrature]

13386

\[ {}y^{\prime } = x -\frac {1}{3} x^{3} \]
i.c.

[_quadrature]

13387

\[ {}x^{\prime } = 2 \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

13388

\[ {}x V^{\prime } = x^{2}+1 \]
i.c.

[_quadrature]

13389

\[ {}x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

13390

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

13391

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

13393

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

13394

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

13395

\[ {}x^{\prime } = t^{3} \left (-x+1\right ) \]
i.c.

[_separable]

13396

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right ) \]
i.c.

[_separable]

13397

\[ {}x^{\prime } = t^{2} x \]

[_separable]

13398

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13399

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-t^{2}} \]

[_separable]

13400

\[ {}x^{\prime }+p x = q \]

[_quadrature]

13401

\[ {}x y^{\prime } = k y \]

[_separable]

13402

\[ {}i^{\prime } = p \left (t \right ) i \]

[_separable]

13403

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

13404

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

13405

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

13406

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

13407

\[ {}y^{\prime }+\frac {y}{x} = x^{2} \]

[_linear]

13408

\[ {}x^{\prime }+x t = 4 t \]
i.c.

[_separable]

13409

\[ {}z^{\prime } = z \tan \left (y \right )+\sin \left (y \right ) \]

[_linear]

13410

\[ {}y^{\prime }+{\mathrm e}^{-x} y = 1 \]
i.c.

[_linear]

13411

\[ {}x^{\prime }+x \tanh \left (t \right ) = 3 \]

[_linear]

13412

\[ {}y^{\prime }+2 y \cot \left (x \right ) = 5 \]
i.c.

[_linear]

13413

\[ {}x^{\prime }+5 x = t \]

[[_linear, ‘class A‘]]

13414

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]
i.c.

[_linear]

13415

\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \]

[[_linear, ‘class A‘]]

13416

\[ {}2 x y-\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

13417

\[ {}1+y \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

[_linear]

13418

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }-y \sin \left (x \right )+\sin \left (y\right ) = 0 \]

[_exact]

13419

\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

13420

\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

13421

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

[_separable]

13422

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

[_separable]

13425

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13527

\[ {}x y^{\prime }+y = x^{3} \]

[_linear]

13528

\[ {}y-x y^{\prime } = x^{2} y y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13529

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

13530

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

[_linear]

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

13532

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

[[_linear, ‘class A‘]]

13533

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

13534

\[ {}x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

13535

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13538

\[ {}y = x y^{\prime }+\frac {1}{y} \]

[_separable]

13540

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

13544

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

13553

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13554

\[ {}x^{\prime }+5 x = 10 t +2 \]
i.c.

[[_linear, ‘class A‘]]

13555

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

13559

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

13563

\[ {}x^{2}-y+\left (y^{2} x^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

13565

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13566

\[ {}y^{\prime } = \frac {x +y-3}{y-x +1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13567

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13568

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

[_linear]

13570

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

13571

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13572

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

13624

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

13629

\[ {}x y^{\prime }+y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

13631

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

[_separable]

13633

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

13640

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

[_linear]

13642

\[ {}y y^{\prime } = 1 \]

[_quadrature]

13644

\[ {}5 y^{\prime }-x y = 0 \]

[_separable]

13645

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

13830

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

13838

\[ {}y-x y^{\prime } = 0 \]

[_separable]

13839

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

[_separable]

13840

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

13841

\[ {}\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

[_separable]

13842

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

13843

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

13844

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

13846

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

13849

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

13850

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

13851

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13852

\[ {}y+x +x y^{\prime } = 0 \]

[_linear]

13853

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13857

\[ {}t -s+t s^{\prime } = 0 \]

[_linear]

13858

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

13859

\[ {}x \cos \left (\frac {y}{x}\right ) \left (x y^{\prime }+y\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

13862

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

[_linear]

13864

\[ {}\frac {x +y y^{\prime }}{\sqrt {y^{2}+x^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

13867

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

13868

\[ {}y^{\prime }-\frac {a y}{x} = \frac {x +1}{x} \]

[_linear]

13869

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

[_linear]

13870

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

[_linear]

13871

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

[_linear]

13872

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

[_linear]

13873

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

13874

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

13875

\[ {}y^{\prime }+\frac {\left (-2 x +1\right ) y}{x^{2}}-1 = 0 \]

[_linear]

13877

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

[_separable]

13878

\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \]

[_rational, _Bernoulli]

13882

\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

13883

\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

13884

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _exact, _rational]

13885

\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

13886

\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

13887

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

13888

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

13889

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13890

\[ {}x +y y^{\prime } = \frac {y}{y^{2}+x^{2}}-\frac {x y^{\prime }}{y^{2}+x^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

13895

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

13897

\[ {}y = x y^{\prime }+y^{\prime } \]

[_separable]

13900

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

13952

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

13955

\[ {}y^{\prime } \left (x^{2}+1\right )-x y-\alpha = 0 \]

[_linear]

13956

\[ {}x \cos \left (\frac {y}{x}\right ) y^{\prime } = y \cos \left (\frac {y}{x}\right )-x \]

[[_homogeneous, ‘class A‘], _dAlembert]

13958

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

13960

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

13965

\[ {}y^{\prime }+\frac {y}{x} = {\mathrm e}^{x} \]
i.c.

[_linear]

13987

\[ {}-y+x y^{\prime } = 0 \]

[_separable]

13991

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

13992

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

[_linear]

13994

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

13995

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

13997

\[ {}x y^{\prime }-\sin \left (x \right ) = 0 \]

[_quadrature]

13998

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

14002

\[ {}2 x y^{\prime }-y = 0 \]

[_separable]

14008

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

14009

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

14010

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

[[_linear, ‘class A‘]]

14012

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

14014

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

14015

\[ {}x y^{\prime } \ln \left (x \right )-\left (\ln \left (x \right )+1\right ) y = 0 \]

[_separable]

14027

\[ {}y^{\prime } = 1-x \]

[_quadrature]

14028

\[ {}y^{\prime } = x -1 \]

[_quadrature]

14029

\[ {}y^{\prime } = 1-y \]

[_quadrature]

14030

\[ {}y^{\prime } = 1+y \]

[_quadrature]

14031

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14032

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

14033

\[ {}y^{\prime } = x y \]

[_separable]

14034

\[ {}y^{\prime } = -x y \]

[_separable]

14037

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

14038

\[ {}y^{\prime } = x y \]

[_separable]

14039

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14040

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14041

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

14042

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

14044

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

14045

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14047

\[ {}y^{\prime } = \frac {2 x -y}{3 y+x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14049

\[ {}y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \]

[_linear]

14050

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14051

\[ {}y^{\prime } = \frac {1}{x y} \]

[_separable]

14052

\[ {}y^{\prime } = \ln \left (y-1\right ) \]

[_quadrature]

14053

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

[_quadrature]

14054

\[ {}y^{\prime } = \frac {y}{y-x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14055

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

14056

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

14057

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

14058

\[ {}y^{\prime } = \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

14059

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14060

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14061

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

14062

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

14063

\[ {}y^{\prime } = a y+b \]
i.c.

[_quadrature]

14064

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

14065

\[ {}y^{\prime } = x y+\frac {1}{x^{2}+1} \]
i.c.

[_linear]

14066

\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]
i.c.

[_linear]

14067

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \]
i.c.

[_linear]

14068

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

14069

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

14070

\[ {}y^{\prime } = y \cot \left (x \right )+\csc \left (x \right ) \]
i.c.

[_linear]

14071

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14073

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

14074

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

14075

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

14076

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

14077

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14078

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14079

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14080

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]
i.c.

[_quadrature]

14081

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14082

\[ {}y^{\prime } = \tan \left (x \right ) \]
i.c.

[_quadrature]

14083

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

14084

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14085

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14086

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

14087

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14088

\[ {}y^{\prime } = \frac {2 x}{y} \]
i.c.

[_separable]

14089

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

14090

\[ {}y^{\prime } = x +x y \]
i.c.

[_separable]

14091

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

14092

\[ {}y-x^{2} y^{\prime } = 0 \]
i.c.

[_separable]

14093

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

14094

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

[_separable]

14095

\[ {}y^{\prime } = \frac {1-x y}{x^{2}} \]

[_linear]

14096

\[ {}y^{\prime } = -\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14097

\[ {}y^{\prime } = \frac {y^{2}}{1-x y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14098

\[ {}y^{\prime } = 4 y+1 \]
i.c.

[_quadrature]

14099

\[ {}y^{\prime } = x y+2 \]
i.c.

[_linear]

14100

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14101

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]
i.c.

[_linear]

14102

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]
i.c.

[_linear]

14103

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]
i.c.

[_linear]

14104

\[ {}y^{\prime } = y \cot \left (x \right )+\sin \left (x \right ) \]
i.c.

[_linear]

14105

\[ {}x -y y^{\prime } = 0 \]

[_separable]

14106

\[ {}y-x y^{\prime } = 0 \]

[_separable]

14107

\[ {}x^{2}-y+x y^{\prime } = 0 \]

[_linear]

14108

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

[_separable]

14109

\[ {}x \left (1-y^{3}\right )-3 y^{2} y^{\prime } = 0 \]

[_separable]

14110

\[ {}y \left (2 x -1\right )+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

14111

\[ {}y^{\prime } = \frac {1}{x -1} \]
i.c.

[_quadrature]

14112

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

14113

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14114

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

14115

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

14116

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

[_linear]

14117

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]
i.c.

[_linear]

14118

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14119

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14120

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14121

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14122

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14123

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14124

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14125

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14126

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14127

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]
i.c.

[_separable]

14128

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14129

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14130

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14131

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]
i.c.

[_separable]

14132

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14133

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14134

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14135

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14136

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]
i.c.

[_separable]

14137

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]
i.c.

[_quadrature]

14138

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]
i.c.

[_quadrature]

14139

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]
i.c.

[_quadrature]

14140

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14141

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14142

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14143

\[ {}y^{\prime } = \frac {y}{y-x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14144

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14146

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14147

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14148

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14149

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14150

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]
i.c.

[_separable]

14277

\[ {}y^{\prime } = \frac {y+1}{t +1} \]

[_separable]

14278

\[ {}y^{\prime } = t^{2} y^{2} \]

[_separable]

14279

\[ {}y^{\prime } = t^{4} y \]

[_separable]

14280

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

14281

\[ {}y^{\prime } = 2-y \]

[_quadrature]

14282

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14283

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

14284

\[ {}y^{\prime } = 2 t y^{2}+3 y^{2} \]

[_separable]

14285

\[ {}y^{\prime } = \frac {t}{y} \]

[_separable]

14286

\[ {}y^{\prime } = \frac {t}{t^{2} y+y} \]

[_separable]

14287

\[ {}y^{\prime } = t y^{{1}/{3}} \]

[_separable]

14288

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

14289

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14290

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

14291

\[ {}y^{\prime } = \frac {4 t}{1+3 y^{2}} \]

[_separable]

14292

\[ {}v^{\prime } = t^{2} v-2-2 v+t^{2} \]

[_separable]

14293

\[ {}y^{\prime } = \frac {1}{t y+t +y+1} \]

[_separable]

14294

\[ {}y^{\prime } = \frac {{\mathrm e}^{t} y}{1+y^{2}} \]

[_separable]

14295

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14296

\[ {}w^{\prime } = \frac {w}{t} \]

[_separable]

14297

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

14298

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

14299

\[ {}y^{\prime } = t y \]
i.c.

[_separable]

14300

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14301

\[ {}y^{\prime } = t^{2} y^{3} \]
i.c.

[_separable]

14302

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14303

\[ {}y^{\prime } = \frac {t}{y-t^{2} y} \]
i.c.

[_separable]

14304

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14305

\[ {}y^{\prime } = t y^{2}+2 y^{2} \]
i.c.

[_separable]

14306

\[ {}x^{\prime } = \frac {t^{2}}{x+t^{3} x} \]
i.c.

[_separable]

14307

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

14308

\[ {}y^{\prime } = \left (1+y^{2}\right ) t \]
i.c.

[_separable]

14309

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

14310

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14311

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

14312

\[ {}y^{\prime } = t^{2}+t \]

[_quadrature]

14313

\[ {}y^{\prime } = t^{2}+1 \]

[_quadrature]

14314

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

14315

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

14316

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

14317

\[ {}y^{\prime } = y+t +1 \]

[[_linear, ‘class A‘]]

14318

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

14319

\[ {}y^{\prime } = 2 y-t \]
i.c.

[[_linear, ‘class A‘]]

14321

\[ {}y^{\prime } = \left (t +1\right ) y \]
i.c.

[_separable]

14322

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14323

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14325

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14326

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14327

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

14328

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14329

\[ {}y^{\prime } = y^{3}+y^{2} \]

[_quadrature]

14330

\[ {}y^{\prime } = -t^{2}+2 \]

[_quadrature]

14331

\[ {}y^{\prime } = t y+t y^{2} \]

[_separable]

14332

\[ {}y^{\prime } = t^{2}+t^{2} y \]

[_separable]

14333

\[ {}y^{\prime } = t +t y \]

[_separable]

14334

\[ {}y^{\prime } = t^{2}-2 \]

[_quadrature]

14335

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

[_quadrature]

14336

\[ {}\theta ^{\prime } = 2 \]

[_quadrature]

14337

\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

[_quadrature]

14338

\[ {}v^{\prime } = -\frac {v}{R C} \]

[_quadrature]

14339

\[ {}v^{\prime } = \frac {K -v}{R C} \]

[_quadrature]

14340

\[ {}v^{\prime } = 2 V \left (t \right )-2 v \]

[[_linear, ‘class A‘]]

14341

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14344

\[ {}y^{\prime } = \sin \left (y\right ) \]
i.c.

[_quadrature]

14345

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14346

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14347

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14348

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14349

\[ {}y^{\prime } = y^{2}-y^{3} \]
i.c.

[_quadrature]

14351

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

14352

\[ {}y^{\prime } = 2-y \]
i.c.

[_quadrature]

14353

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]
i.c.

[_quadrature]

14354

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14356

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14357

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14358

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

14359

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14360

\[ {}y^{\prime } = \frac {1}{\left (y+1\right ) \left (t -2\right )} \]
i.c.

[_separable]

14361

\[ {}y^{\prime } = \frac {1}{\left (2+y\right )^{2}} \]
i.c.

[_quadrature]

14362

\[ {}y^{\prime } = \frac {t}{y-2} \]
i.c.

[_separable]

14363

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14364

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14365

\[ {}y^{\prime } = 3 y \left (y-2\right ) \]
i.c.

[_quadrature]

14367

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14368

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14370

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14371

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14372

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14374

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14375

\[ {}w^{\prime } = w \cos \left (w\right ) \]

[_quadrature]

14376

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14377

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14378

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14379

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14381

\[ {}y^{\prime } = \frac {1}{y-2} \]

[_quadrature]

14382

\[ {}v^{\prime } = -v^{2}-2 v-2 \]

[_quadrature]

14383

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

14384

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

14385

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14386

\[ {}y^{\prime } = y \ln \left ({| y|}\right ) \]

[_quadrature]

14387

\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

[_quadrature]

14388

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14389

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14390

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14391

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14392

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14393

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14394

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14395

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

14396

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14397

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

14399

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14400

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14401

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

14402

\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14403

\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14404

\[ {}y^{\prime } = -3 y+4 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

14405

\[ {}y^{\prime } = 2 y+\sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

14406

\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

[[_linear, ‘class A‘]]

14407

\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

[[_linear, ‘class A‘]]

14408

\[ {}y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

14409

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

14410

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14411

\[ {}y^{\prime }+3 y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14412

\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

14413

\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

[[_linear, ‘class A‘]]

14414

\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

14415

\[ {}y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

14416

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

14417

\[ {}y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14418

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

14419

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

[_linear]

14420

\[ {}y^{\prime } = -\frac {y}{t +1}+t^{2} \]

[_linear]

14421

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

14422

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

[_linear]

14423

\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

[_linear]

14424

\[ {}y^{\prime } = -\frac {y}{t +1}+2 \]
i.c.

[_linear]

14425

\[ {}y^{\prime } = \frac {y}{t +1}+4 t^{2}+4 t \]
i.c.

[_linear]

14426

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

14427

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]
i.c.

[_linear]

14428

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]
i.c.

[_linear]

14429

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]
i.c.

[_linear]

14430

\[ {}y^{\prime } = \sin \left (t \right ) y+4 \]

[_linear]

14431

\[ {}y^{\prime } = t^{2} y+4 \]

[_linear]

14432

\[ {}y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right ) \]

[_linear]

14433

\[ {}y^{\prime } = y+4 \cos \left (t^{2}\right ) \]

[[_linear, ‘class A‘]]

14434

\[ {}y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right ) \]

[_linear]

14436

\[ {}y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

14437

\[ {}y^{\prime } = t^{r} y+4 \]

[_linear]

14438

\[ {}v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

14439

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

14440

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

14441

\[ {}y^{\prime } = 3 y \]

[_quadrature]

14442

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

14443

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

14444

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

[_separable]

14445

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

14447

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

14448

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

14449

\[ {}y^{\prime } = t y \]

[_separable]

14450

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

[[_linear, ‘class A‘]]

14451

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

14452

\[ {}y^{\prime } = -5 y+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

14453

\[ {}y^{\prime } = t +\frac {2 y}{t +1} \]

[_linear]

14454

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

14455

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

14456

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

[[_linear, ‘class A‘]]

14457

\[ {}x^{\prime } = -x t \]
i.c.

[_separable]

14458

\[ {}y^{\prime } = 2 y+\cos \left (4 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

14459

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

14460

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

14461

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]
i.c.

[[_linear, ‘class A‘]]

14462

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]
i.c.

[_linear]

14463

\[ {}y^{\prime } = \frac {\left (t +1\right )^{2}}{\left (y+1\right )^{2}} \]
i.c.

[_separable]

14464

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

14466

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

14467

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

14470

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

14471

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

14472

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

14655

\[ {}y^{\prime } = 3-\sin \left (x \right ) \]

[_quadrature]

14656

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

14657

\[ {}y^{\prime }+4 y = {\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14659

\[ {}y y^{\prime } = 2 x \]

[_separable]

14665

\[ {}y^{\prime } = 4 x^{3} \]

[_quadrature]

14666

\[ {}y^{\prime } = 20 \,{\mathrm e}^{-4 x} \]

[_quadrature]

14667

\[ {}x y^{\prime }+\sqrt {x} = 2 \]

[_quadrature]

14668

\[ {}\sqrt {4+x}\, y^{\prime } = 1 \]

[_quadrature]

14669

\[ {}y^{\prime } = x \cos \left (x^{2}\right ) \]

[_quadrature]

14670

\[ {}y^{\prime } = x \cos \left (x \right ) \]

[_quadrature]

14671

\[ {}x = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14672

\[ {}1 = \left (x^{2}-9\right ) y^{\prime } \]

[_quadrature]

14673

\[ {}1 = x^{2}-9 y^{\prime } \]

[_quadrature]

14677

\[ {}y^{\prime } = 40 x \,{\mathrm e}^{2 x} \]
i.c.

[_quadrature]

14678

\[ {}\left (x +6\right )^{{1}/{3}} y^{\prime } = 1 \]
i.c.

[_quadrature]

14679

\[ {}y^{\prime } = \frac {x -1}{x +1} \]
i.c.

[_quadrature]

14680

\[ {}x y^{\prime }+2 = \sqrt {x} \]
i.c.

[_quadrature]

14681

\[ {}y^{\prime } \cos \left (x \right )-\sin \left (x \right ) = 0 \]
i.c.

[_quadrature]

14682

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1 \]
i.c.

[_quadrature]

14684

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]

[_quadrature]

14685

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14686

\[ {}y^{\prime } = \sin \left (\frac {x}{2}\right ) \]
i.c.

[_quadrature]

14687

\[ {}y^{\prime } = 3 \sqrt {x +3} \]

[_quadrature]

14688

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14689

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14690

\[ {}y^{\prime } = 3 \sqrt {x +3} \]
i.c.

[_quadrature]

14691

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]
i.c.

[_quadrature]

14692

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]
i.c.

[_quadrature]

14693

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

14694

\[ {}y^{\prime } = {\mathrm e}^{-9 x^{2}} \]
i.c.

[_quadrature]

14695

\[ {}x y^{\prime } = \sin \left (x \right ) \]
i.c.

[_quadrature]

14696

\[ {}x y^{\prime } = \sin \left (x^{2}\right ) \]
i.c.

[_quadrature]

14700

\[ {}y^{\prime }+3 x y = 6 x \]

[_separable]

14702

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

14703

\[ {}x^{2} y^{\prime }+x y^{2} = x \]

[_separable]

14705

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

14706

\[ {}\left (-2+x \right ) y^{\prime } = y+3 \]

[_separable]

14707

\[ {}\left (y-2\right ) y^{\prime } = x -3 \]

[_separable]

14708

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

14710

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

14711

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14712

\[ {}y^{\prime } = 3 x -y \sin \left (x \right ) \]

[_linear]

14714

\[ {}y^{\prime } = \sqrt {x^{2}+1} \]

[_quadrature]

14715

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

14716

\[ {}y^{\prime }+x y = 4 x \]

[_separable]

14717

\[ {}y^{\prime }+4 y = x^{2} \]

[[_linear, ‘class A‘]]

14718

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

14720

\[ {}y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \]

[_separable]

14721

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

14722

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

14723

\[ {}x y y^{\prime } = y^{2}+9 \]

[_separable]

14724

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

14725

\[ {}\cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

[_separable]

14726

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

14727

\[ {}y^{\prime } = \frac {x}{y} \]
i.c.

[_separable]

14728

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

14729

\[ {}y y^{\prime } = x y^{2}+x \]
i.c.

[_separable]

14730

\[ {}y y^{\prime } = 3 \sqrt {x y^{2}+9 x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14731

\[ {}y^{\prime } = x y-4 x \]

[_separable]

14732

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

14733

\[ {}y y^{\prime } = x y^{2}-9 x \]

[_separable]

14734

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

14735

\[ {}y^{\prime } = {\mathrm e}^{x +y^{2}} \]

[_separable]

14736

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14737

\[ {}y^{\prime } = x y-4 x \]

[_separable]

14738

\[ {}y^{\prime } = x y-3 x -2 y+6 \]

[_separable]

14739

\[ {}y^{\prime } = 3 y^{2}-y^{2} \sin \left (x \right ) \]

[_separable]

14740

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14741

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

14742

\[ {}y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

[_separable]

14743

\[ {}y^{\prime } \left (x^{2}+1\right ) = 1+y^{2} \]

[_separable]

14744

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y^{2} \]

[_separable]

14745

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14746

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

14747

\[ {}y^{\prime } = 3 x y^{3} \]

[_separable]

14748

\[ {}y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

[_separable]

14749

\[ {}y^{\prime }-3 y^{2} x^{2} = -3 x^{2} \]

[_separable]

14750

\[ {}y^{\prime }-3 y^{2} x^{2} = 3 x^{2} \]

[_separable]

14751

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

14752

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

14753

\[ {}y y^{\prime } = \sin \left (x \right ) \]
i.c.

[_separable]

14754

\[ {}y^{\prime } = 2 x -1+2 x y-y \]
i.c.

[_separable]

14755

\[ {}x y^{\prime } = y^{2}-y \]
i.c.

[_separable]

14756

\[ {}x y^{\prime } = y^{2}-y \]
i.c.

[_separable]

14757

\[ {}y^{\prime } = \frac {y^{2}-1}{x y} \]
i.c.

[_separable]

14758

\[ {}\left (y^{2}-1\right ) y^{\prime } = 4 x y \]
i.c.

[_separable]

14759

\[ {}x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

14763

\[ {}y^{\prime } = 1+x y+3 y \]

[_linear]

14764

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

14765

\[ {}y^{\prime }-{\mathrm e}^{2 x} = 0 \]

[_quadrature]

14766

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

14767

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

14768

\[ {}x y^{\prime }+\cos \left (x^{2}\right ) = 827 y \]

[_linear]

14769

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

14770

\[ {}y^{\prime }+2 y = 20 \,{\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

14771

\[ {}y^{\prime } = 4 y+16 x \]

[[_linear, ‘class A‘]]

14772

\[ {}y^{\prime }-2 x y = x \]

[_separable]

14773

\[ {}x y^{\prime }+3 y-10 x^{2} = 0 \]

[_linear]

14774

\[ {}x^{2} y^{\prime }+2 x y = \sin \left (x \right ) \]

[_linear]

14775

\[ {}x y^{\prime } = \sqrt {x}+3 y \]

[_linear]

14776

\[ {}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = \cos \left (x \right )^{2} \]

[_linear]

14777

\[ {}x y^{\prime }+\left (5 x +2\right ) y = \frac {20}{x} \]

[_linear]

14778

\[ {}2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \]

[_linear]

14779

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

14780

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

14781

\[ {}y^{\prime }+5 y = {\mathrm e}^{-3 x} \]
i.c.

[[_linear, ‘class A‘]]

14782

\[ {}3 y+x y^{\prime } = 20 x^{2} \]
i.c.

[_linear]

14783

\[ {}x y^{\prime } = y+x^{2} \cos \left (x \right ) \]
i.c.

[_linear]

14784

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \left (3+3 x^{2}-y\right ) \]
i.c.

[_linear]

14785

\[ {}y^{\prime }+6 x y = \sin \left (x \right ) \]
i.c.

[_linear]

14786

\[ {}x^{2} y^{\prime }+x y = \sqrt {x}\, \sin \left (x \right ) \]
i.c.

[_linear]

14787

\[ {}-y+x y^{\prime } = x^{2} {\mathrm e}^{-x^{2}} \]
i.c.

[_linear]

14789

\[ {}y^{\prime } = \frac {\left (-2 y+3 x \right )^{2}+1}{-2 y+3 x}+\frac {3}{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14790

\[ {}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

14792

\[ {}x^{2} y^{\prime }-x y = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14793

\[ {}y^{\prime } = \frac {y}{x}+\frac {x}{y} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14794

\[ {}\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14795

\[ {}y^{\prime } = \frac {x -y}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14796

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

14797

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14799

\[ {}y^{\prime }-\frac {y}{x} = \frac {1}{y} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14800

\[ {}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14803

\[ {}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )} \]

[[_homogeneous, ‘class C‘], _dAlembert]

14804

\[ {}\left (y-x \right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14805

\[ {}\left (x +y\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14806

\[ {}\left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14807

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14811

\[ {}y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14814

\[ {}\cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right ) \]

[‘y=_G(x,y’)‘]

14816

\[ {}y^{\prime } = \frac {1}{y}-\frac {y}{2 x} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

14817

\[ {}{\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14818

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14819

\[ {}2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14820

\[ {}2-2 x +3 y^{2} y^{\prime } = 0 \]

[_separable]

14821

\[ {}1+3 y^{2} x^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

14822

\[ {}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14823

\[ {}1+\ln \left (x y\right )+\frac {x y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

14824

\[ {}1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_separable]

14825

\[ {}{\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries], _exact]

14826

\[ {}1+y^{4}+x y^{3} y^{\prime } = 0 \]

[_separable]

14827

\[ {}y+\left (y^{4}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

14829

\[ {}1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

14830

\[ {}3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0 \]

[_separable]

14831

\[ {}2 x \left (1+y\right )-y^{\prime } = 0 \]

[_separable]

14833

\[ {}4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14834

\[ {}6+12 y^{2} x^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

14835

\[ {}x y^{\prime } = 2 y-6 x^{3} \]

[_linear]

14836

\[ {}x y^{\prime } = 2 y^{2}-6 y \]

[_separable]

14837

\[ {}4 y^{2}-y^{2} x^{2}+y^{\prime } = 0 \]

[_separable]

14839

\[ {}x^{2} y^{\prime }-\sqrt {x} = 3 \]

[_quadrature]

14842

\[ {}4 x y-6+x^{2} y^{\prime } = 0 \]

[_linear]

14843

\[ {}x y^{2}-6+x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

14844

\[ {}x^{3}+y^{3}+x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14845

\[ {}3 y-x^{3}+x y^{\prime } = 0 \]

[_linear]

14846

\[ {}1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, _Bernoulli]

14848

\[ {}2+2 x^{2}-2 x y+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_linear]

14849

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

14850

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

[_quadrature]

14851

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

[_separable]

14853

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

14854

\[ {}\sin \left (y\right )+\left (x +1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

14855

\[ {}\sin \left (x \right )+2 y^{\prime } \cos \left (x \right ) = 0 \]

[_quadrature]

14856

\[ {}x y y^{\prime } = 2 y^{2}+2 x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

14858

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14860

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

[_separable]

14861

\[ {}1-\left (x +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

14862

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

14863

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

14864

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

[[_linear, ‘class A‘]]

14866

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

[_quadrature]

14867

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

14868

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

14869

\[ {}2 y-6 x +\left (x +1\right ) y^{\prime } = 0 \]

[_linear]

14870

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

14871

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

[_Bernoulli]

14872

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

14873

\[ {}x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14874

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

[_separable]

14875

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

14876

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

[_quadrature]

14877

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

[_separable]

14878

\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14879

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14881

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

14882

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

[_linear]

14883

\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

14884

\[ {}x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}} \]

[_linear]

14942

\[ {}3 y+x y^{\prime } = {\mathrm e}^{2 x} \]

[_linear]

15464

\[ {}2 x -1-y^{\prime } = 0 \]

[_quadrature]

15466

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

15467

\[ {}y^{\prime }+x y = 0 \]

[_separable]

15468

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

15478

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

15479

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15480

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

15481

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

15482

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

15483

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

15484

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

15485

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

15486

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

15487

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

15488

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

15489

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

15490

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15491

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

15492

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

15493

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

15494

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

15495

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

15496

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

15497

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15504

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

15505

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

15506

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

15507

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

15508

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

15509

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15510

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

[_linear]

15514

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

15518

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

15519

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

15526

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15527

\[ {}y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15528

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

15529

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

[_quadrature]

15530

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

15531

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

15532

\[ {}y^{\prime }+2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

15535

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

15536

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

15539

\[ {}y^{\prime } = y+\frac {1}{-t +1} \]

[_linear]

15540

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15541

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

15543

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

15544

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15545

\[ {}t y^{\prime } = y \]

[_separable]

15546

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

15547

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

15548

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15549

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15550

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15551

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15552

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15553

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15554

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15555

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15556

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

15557

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]
i.c.

[_linear]

15558

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]
i.c.

[_linear]

15559

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]
i.c.

[_linear]

15560

\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]
i.c.

[_linear]

15561

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]
i.c.

[_linear]

15562

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

15563

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

15564

\[ {}t y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[_linear]

15565

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]
i.c.

[_linear]

15566

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15567

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

15568

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

15569

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15570

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

15571

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

15572

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

15573

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15574

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

15575

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

15576

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

15577

\[ {}y^{\prime } = \frac {y+1}{t +1} \]

[_separable]

15578

\[ {}y^{\prime } = \frac {2+y}{2 t +1} \]

[_separable]

15579

\[ {}\frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

[_separable]

15580

\[ {}3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

15581

\[ {}\cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

[_separable]

15582

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

15583

\[ {}\left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

[_separable]

15584

\[ {}\cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

[_separable]

15585

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15586

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15587

\[ {}\sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

[_separable]

15588

\[ {}3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

[_separable]

15589

\[ {}x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]

[_separable]

15590

\[ {}\left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

[_separable]

15591

\[ {}y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15592

\[ {}\tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

[_separable]

15593

\[ {}y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

[_separable]

15594

\[ {}x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

[_separable]

15595

\[ {}\frac {-2+x}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

[_separable]

15596

\[ {}\frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

[_separable]

15597

\[ {}y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

[_separable]

15598

\[ {}\frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

[_separable]

15599

\[ {}y^{\prime } = \frac {5^{-t}}{y^{2}} \]

[_separable]

15600

\[ {}y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

[_separable]

15601

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

15604

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

15605

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

15606

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15607

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

15608

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15609

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15610

\[ {}y^{\prime } = x^{3} \]
i.c.

[_quadrature]

15611

\[ {}y^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

15612

\[ {}1 = \cos \left (y\right ) y^{\prime } \]
i.c.

[_quadrature]

15613

\[ {}\sin \left (y \right )^{2} = x^{\prime } \]
i.c.

[_quadrature]

15614

\[ {}y^{\prime } = \frac {\sqrt {t}}{y} \]
i.c.

[_separable]

15615

\[ {}y^{\prime } = \sqrt {\frac {y}{t}} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15616

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]
i.c.

[_separable]

15617

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15618

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

15619

\[ {}y^{\prime } = t \sin \left (t^{2}\right ) \]
i.c.

[_quadrature]

15620

\[ {}y^{\prime } = \frac {1}{x^{2}+1} \]
i.c.

[_quadrature]

15621

\[ {}y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]
i.c.

[_separable]

15622

\[ {}y^{\prime } = \frac {y+3}{3 x +1} \]
i.c.

[_separable]

15623

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15624

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

15625

\[ {}y^{\prime } = \frac {3 y+1}{x +3} \]
i.c.

[_separable]

15626

\[ {}y^{\prime } = y \cos \left (t \right ) \]
i.c.

[_separable]

15627

\[ {}y^{\prime } = y^{2} \cos \left (t \right ) \]
i.c.

[_separable]

15628

\[ {}y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]
i.c.

[_separable]

15629

\[ {}y^{\prime }+y f \left (t \right ) = 0 \]
i.c.

[_separable]

15630

\[ {}y^{\prime } = -\frac {y-2}{-2+x} \]
i.c.

[_separable]

15634

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

15635

\[ {}y^{\prime } = 3 y \]

[_quadrature]

15636

\[ {}y^{\prime } = -y \]

[_quadrature]

15637

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15638

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15639

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

15640

\[ {}y^{\prime } = y f \left (t \right ) \]
i.c.

[_separable]

15641

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

15642

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15643

\[ {}y^{\prime }-y = 2 \cos \left (t \right ) \]

[[_linear, ‘class A‘]]

15644

\[ {}y^{\prime }-y = t^{2}-2 t \]

[[_linear, ‘class A‘]]

15645

\[ {}y^{\prime }-y = 4 t \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15646

\[ {}t y^{\prime }+y = t^{2} \]

[_linear]

15647

\[ {}t y^{\prime }+y = t \]

[_linear]

15648

\[ {}x y^{\prime }+y = x \,{\mathrm e}^{x} \]

[_linear]

15649

\[ {}x y^{\prime }+y = {\mathrm e}^{-x} \]

[_linear]

15650

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

[_linear]

15651

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

[_linear]

15652

\[ {}y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

[_linear]

15653

\[ {}y^{\prime }+y \cot \left (t \right ) = \cos \left (t \right ) \]

[_linear]

15654

\[ {}y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

[_linear]

15655

\[ {}y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

[_linear]

15656

\[ {}y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

[_linear]

15657

\[ {}y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \]

[_linear]

15658

\[ {}y^{\prime }+x y = x^{3} \]

[_linear]

15659

\[ {}y^{\prime }-x y = x \]

[_separable]

15660

\[ {}y^{\prime } = \frac {1}{x +y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

15661

\[ {}y^{\prime }-x = y \]

[[_linear, ‘class A‘]]

15662

\[ {}y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15663

\[ {}x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

[_separable]

15664

\[ {}p^{\prime } = t^{3}+\frac {p}{t} \]

[_linear]

15665

\[ {}v^{\prime }+v = {\mathrm e}^{-s} \]

[[_linear, ‘class A‘]]

15666

\[ {}y^{\prime }-y = 4 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15667

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

15668

\[ {}y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]
i.c.

[_linear]

15669

\[ {}y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15670

\[ {}t y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[_linear]

15671

\[ {}t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]
i.c.

[_linear]

15672

\[ {}\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]
i.c.

[_linear]

15673

\[ {}\left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]
i.c.

[_separable]

15674

\[ {}x^{\prime } = x+t +1 \]
i.c.

[[_linear, ‘class A‘]]

15675

\[ {}y^{\prime } = {\mathrm e}^{2 t}+2 y \]
i.c.

[[_linear, ‘class A‘]]

15676

\[ {}y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

[_linear]

15680

\[ {}y^{\prime }-y = \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

15681

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

15682

\[ {}y^{\prime }+y = {\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

15683

\[ {}y^{\prime }+y = 2-{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

15684

\[ {}y^{\prime }-5 y = t \]

[[_linear, ‘class A‘]]

15685

\[ {}y^{\prime }+3 y = 27 t^{2}+9 \]

[[_linear, ‘class A‘]]

15686

\[ {}y^{\prime }-\frac {y}{2} = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15687

\[ {}y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

[[_linear, ‘class A‘]]

15688

\[ {}y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15689

\[ {}y^{\prime }-3 y = 27 t^{2} \]

[[_linear, ‘class A‘]]

15690

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15691

\[ {}y^{\prime }+y = 4+3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

15692

\[ {}y^{\prime }+y = 2 \cos \left (t \right )+t \]

[[_linear, ‘class A‘]]

15693

\[ {}y^{\prime }+\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15694

\[ {}y^{\prime }-\frac {y}{2} = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15695

\[ {}t y^{\prime }+y = t \cos \left (t \right ) \]

[_linear]

15696

\[ {}y^{\prime }+y = t \]
i.c.

[[_linear, ‘class A‘]]

15697

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15698

\[ {}y^{\prime }+y = \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15699

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

15700

\[ {}y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15701

\[ {}\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

[_separable]

15702

\[ {}y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

[_separable]

15703

\[ {}y \sec \left (t \right )^{2}+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

[_linear]

15704

\[ {}3 t y^{2}+y^{3} y^{\prime } = 0 \]

[_separable]

15705

\[ {}t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

[_exact]

15706

\[ {}y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15707

\[ {}\ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

[[_homogeneous, ‘class G‘], _exact]

15708

\[ {}{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

[_separable]

15709

\[ {}3 t^{2}-y^{\prime } = 0 \]

[_quadrature]

15710

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

15711

\[ {}y^{2}+2 t y y^{\prime } = 0 \]

[_separable]

15712

\[ {}\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

[_separable]

15713

\[ {}2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

[_exact, _rational]

15714

\[ {}-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

15715

\[ {}2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

15716

\[ {}2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

15717

\[ {}\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

15718

\[ {}3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

15719

\[ {}{\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15720

\[ {}3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15721

\[ {}-2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15722

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

15724

\[ {}2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

[_exact]

15725

\[ {}\left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

15726

\[ {}\frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

15727

\[ {}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15728

\[ {}2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

15729

\[ {}2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]
i.c.

[_separable]

15730

\[ {}1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]
i.c.

[_linear]

15731

\[ {}2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

15732

\[ {}1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15733

\[ {}{\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15734

\[ {}2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15735

\[ {}y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

15736

\[ {}\cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

15737

\[ {}\frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]
i.c.

[_exact, _rational, _Bernoulli]

15738

\[ {}\frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]
i.c.

[_exact]

15739

\[ {}-2 x -y \cos \left (x y\right )+\left (2 y-x \cos \left (x y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15740

\[ {}-4 x^{3}+6 y \sin \left (6 x y\right )+\left (4 y^{3}+6 x \sin \left (6 x y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15741

\[ {}t^{2} y+t^{3} y^{\prime } = 0 \]

[_separable]

15742

\[ {}y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

[_separable]

15743

\[ {}y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15744

\[ {}2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15745

\[ {}y+2 t^{2}+\left (t^{2} y-t \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

15746

\[ {}5 t y+4 y^{2}+1+\left (t^{2}+2 t y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15748

\[ {}2 t +\tan \left (y\right )+\left (t -t^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

15749

\[ {}2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

15750

\[ {}-1+{\mathrm e}^{t y} y+y \cos \left (t y\right )+\left (1+{\mathrm e}^{t y} t +t \cos \left (t y\right )\right ) y^{\prime } = 0 \]

[_exact]

15751

\[ {}2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[_quadrature]

15752

\[ {}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15753

\[ {}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15754

\[ {}y^{\prime }-\frac {y}{2} = \frac {t}{y} \]

[_rational, _Bernoulli]

15756

\[ {}2 t y^{\prime }-y = 2 t y^{3} \cos \left (t \right ) \]

[_Bernoulli]

15758

\[ {}y^{\prime }-2 y = \frac {\cos \left (t \right )}{\sqrt {y}} \]

[_Bernoulli]

15760

\[ {}y^{\prime }-\frac {y}{t} = t y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

15761

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15762

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15766

\[ {}2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0 \]

[_separable]

15767

\[ {}\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15768

\[ {}\frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0 \]

[_separable]

15769

\[ {}\sqrt {t^{2}+1}+y y^{\prime } = 0 \]

[_separable]

15771

\[ {}2 y-3 t +t y^{\prime } = 0 \]

[_linear]

15772

\[ {}t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15774

\[ {}t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15775

\[ {}y^{\prime } = \frac {t +4 y}{4 t +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15776

\[ {}t -y+t y^{\prime } = 0 \]

[_linear]

15777

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15780

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15782

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15785

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

15788

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15789

\[ {}t +y-t y^{\prime } = 0 \]
i.c.

[_linear]

15791

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15792

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15796

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15799

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

15808

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

[_linear]

15811

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15812

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

15813

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

15814

\[ {}\cos \left (4 x \right )-8 \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

15815

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

15816

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

15817

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

15818

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

15819

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

15820

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

15821

\[ {}y^{\prime }+3 y = -10 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

15823

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15824

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

15826

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

15827

\[ {}x^{\prime } = \frac {5 t x}{x^{2}+t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15828

\[ {}t^{2}-y+\left (-t +y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

15829

\[ {}t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

15830

\[ {}\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime } = 0 \]

[_exact]

15831

\[ {}t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15832

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

15833

\[ {}y^{\prime }+t y = t \]

[_separable]

15834

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

15835

\[ {}t r^{\prime }+r = t \cos \left (t \right ) \]

[_linear]

15837

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

15839

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

15842

\[ {}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15843

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

15844

\[ {}{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15845

\[ {}\sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15846

\[ {}y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15847

\[ {}\frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

15850

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

15851

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

15852

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

15976

\[ {}y^{\prime }-4 y = t^{2} \]

[[_linear, ‘class A‘]]

15977

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

15978

\[ {}y^{\prime }-y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

15979

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

15980

\[ {}y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

[[_linear, ‘class A‘]]

16341

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

16342

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

16345

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

16346

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16348

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

16351

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

[_linear]

16352

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

16353

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

[_separable]

16354

\[ {}y^{\prime } = x +1 \]

[_quadrature]

16355

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

16356

\[ {}y^{\prime } = y-x \]

[[_linear, ‘class A‘]]

16357

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

16358

\[ {}y^{\prime } = \left (y-1\right )^{2} \]

[_quadrature]

16359

\[ {}y^{\prime } = \left (y-1\right ) x \]

[_separable]

16362

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

16363

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

16364

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

16365

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16366

\[ {}y^{\prime } = 1-x \]

[_quadrature]

16367

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

16368

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

16369

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

16370

\[ {}y^{\prime } = 1 \]

[_quadrature]

16371

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

16372

\[ {}y^{\prime } = y \]

[_quadrature]

16373

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

16376

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

16377

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]
i.c.

[[_linear, ‘class A‘]]

16378

\[ {}x y^{\prime } = 2 x -y \]
i.c.

[_linear]

16379

\[ {}1+y^{2}+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

16380

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

16381

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

16382

\[ {}1+y^{2} = x y^{\prime } \]

[_separable]

16385

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

16387

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

16388

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

16389

\[ {}2 x \sqrt {1-y^{2}} = y^{\prime } \left (x^{2}+1\right ) \]

[_separable]

16393

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

16395

\[ {}x y^{\prime }+y = a \left (x y+1\right ) \]
i.c.

[_linear]

16397

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

16409

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

16410

\[ {}\left (x +1\right ) y^{\prime } = y-1 \]

[_separable]

16411

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

16414

\[ {}x -y+x y^{\prime } = 0 \]

[_linear]

16415

\[ {}x y^{\prime } = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

16419

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16420

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16421

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

16423

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16424

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16425

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16426

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16428

\[ {}x +y+\left (y-1+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

16429

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16430

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16433

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

16434

\[ {}x^{2}-x y^{\prime } = y \]
i.c.

[_linear]

16435

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

16436

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

16437

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]
i.c.

[_linear]

16438

\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \]

[_linear]

16439

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]
i.c.

[_linear]

16440

\[ {}y^{\prime } x \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

[_linear]

16441

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

[[_homogeneous, ‘class G‘], _rational]

16442

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_separable]

16443

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

16444

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16445

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

[_linear]

16446

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

[_linear]

16447

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \]

[[_linear, ‘class A‘]]

16448

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

16449

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]
i.c.

[_linear]

16450

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]
i.c.

[_linear]

16451

\[ {}2 x y^{\prime }-y = 1-\frac {2}{\sqrt {x}} \]
i.c.

[_linear]

16452

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]
i.c.

[_linear]

16453

\[ {}x y^{\prime }+y = 2 x \]

[_linear]

16454

\[ {}y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 1 \]

[_linear]

16455

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]
i.c.

[_linear]

16456

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

16457

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16458

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

[[_1st_order, _with_linear_symmetries]]

16459

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

[_separable]

16461

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

[_Bernoulli]

16463

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16464

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

16465

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

16467

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x +1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

16470

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16471

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

16472

\[ {}\frac {x}{\sqrt {y^{2}+x^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {y^{2}+x^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

16473

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

16474

\[ {}2 x +\frac {y^{2}+x^{2}}{x^{2} y} = \frac {\left (y^{2}+x^{2}\right ) y^{\prime }}{x y^{2}} \]

[[_homogeneous, ‘class D‘], _exact, _rational]

16475

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

16476

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

16477

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

16478

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact]

16479

\[ {}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

16480

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16481

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

16482

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16483

\[ {}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

16484

\[ {}x^{2}+y-x y^{\prime } = 0 \]

[_linear]

16485

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16486

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

[_linear]

16487

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[_Bernoulli]

16488

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

16489

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

[_rational]

16491

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

16492

\[ {}x -x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

16495

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

[_quadrature]

16496

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

16497

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

16499

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16527

\[ {}x^{2} y^{\prime } = y^{2} x^{2}+x y+1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

16531

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

16532

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

16536

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

16544

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

[_linear]

16546

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16547

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

16548

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

[_exact, _rational]

16549

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

[_Bernoulli]

16550

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_linear]

16551

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

16552

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

[_quadrature]

16553

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16555

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

16558

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

16559

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16560

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

16561

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

16563

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16564

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

16566

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16567

\[ {}y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

16572

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

16573

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]

16574

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

16575

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

16578

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

16580

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

[[_homogeneous, ‘class G‘]]

16586

\[ {}{y^{\prime }}^{4} = 1 \]

[_quadrature]

16976

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

[_separable]

16977

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

[_separable]

16978

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

[_separable]

16979

\[ {}y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

[_separable]

16980

\[ {}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

[_separable]

16981

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

16982

\[ {}y y^{\prime } = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \]

[_separable]

16983

\[ {}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

[_separable]

16984

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

16985

\[ {}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

[_separable]

16986

\[ {}y^{\prime } = 4 \sqrt {x y} \]

[[_homogeneous, ‘class G‘]]

16987

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

[_separable]

16988

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]
i.c.

[_separable]

16989

\[ {}y^{\prime } = \frac {3-2 x}{y} \]
i.c.

[_separable]

16990

\[ {}x +y \,{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

16991

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]
i.c.

[_separable]

16992

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]
i.c.

[_separable]

16993

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]
i.c.

[_separable]

16994

\[ {}y^{\prime } = 2 x y^{2}+4 x^{3} y^{2} \]
i.c.

[_separable]

16995

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

16996

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]
i.c.

[_separable]

16997

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]
i.c.

[_separable]

16998

\[ {}y^{\prime } = \frac {3 x^{2}-{\mathrm e}^{x}}{2 y-11} \]
i.c.

[_separable]

16999

\[ {}x^{2} y^{\prime } = y-x y \]
i.c.

[_separable]

17000

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]
i.c.

[_separable]

17001

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-4}} \]
i.c.

[_separable]

17002

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

17003

\[ {}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right ) \]
i.c.

[_separable]

17004

\[ {}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]
i.c.

[_separable]

17005

\[ {}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6} \]
i.c.

[_separable]

17006

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]
i.c.

[_separable]

17007

\[ {}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y} \]
i.c.

[_separable]

17008

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y} \]
i.c.

[_separable]

17009

\[ {}y^{\prime } = 2 \left (x +1\right ) \left (1+y^{2}\right ) \]
i.c.

[_separable]

17010

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]
i.c.

[_separable]

17011

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]
i.c.

[_separable]

17012

\[ {}y^{\prime } = \frac {a y+b}{c y+d} \]

[_quadrature]

17013

\[ {}y^{\prime }+4 y = t +{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

17014

\[ {}y^{\prime }-2 y = t^{2} {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

17015

\[ {}y^{\prime }+y = t \,{\mathrm e}^{-t}+1 \]

[[_linear, ‘class A‘]]

17016

\[ {}y^{\prime }+\frac {y}{t} = 5+\cos \left (2 t \right ) \]

[_linear]

17017

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

17018

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

17019

\[ {}y^{\prime }+2 t y = 16 t \,{\mathrm e}^{-t^{2}} \]

[_linear]

17020

\[ {}\left (t^{2}+1\right ) y^{\prime }+4 t y = \frac {1}{\left (t^{2}+1\right )^{2}} \]

[_linear]

17021

\[ {}2 y^{\prime }+y = 3 t \]

[[_linear, ‘class A‘]]

17022

\[ {}t y^{\prime }-y = t^{3} {\mathrm e}^{-t} \]

[_linear]

17023

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

17024

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

17025

\[ {}y^{\prime }-y = 2 t \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

17026

\[ {}y^{\prime }+2 y = t \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

17027

\[ {}t y^{\prime }+4 y = t^{2}-t +1 \]
i.c.

[_linear]

17028

\[ {}y^{\prime }+\frac {2 y}{t} = \frac {\cos \left (t \right )}{t^{2}} \]
i.c.

[_linear]

17029

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

17030

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]
i.c.

[_linear]

17031

\[ {}t^{3} y^{\prime }+4 t^{2} y = {\mathrm e}^{-t} \]
i.c.

[_linear]

17032

\[ {}t y^{\prime }+\left (t +1\right ) y = t \]
i.c.

[_linear]

17033

\[ {}y^{\prime }-\frac {y}{3} = 3 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17034

\[ {}2 y^{\prime }-y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

17035

\[ {}3 y^{\prime }-2 y = {\mathrm e}^{-\frac {\pi t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

17036

\[ {}t y^{\prime }+\left (t +1\right ) y = 2 t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

17037

\[ {}t y^{\prime }+2 y = \frac {\sin \left (t \right )}{t} \]
i.c.

[_linear]

17038

\[ {}\sin \left (t \right ) y^{\prime }+y \cos \left (t \right ) = {\mathrm e}^{t} \]
i.c.

[_linear]

17039

\[ {}y^{\prime }+\frac {y}{2} = 2 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17040

\[ {}y^{\prime }+\frac {4 y}{3} = 1-\frac {t}{4} \]
i.c.

[[_linear, ‘class A‘]]

17041

\[ {}y^{\prime }+\frac {y}{4} = 3+2 \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17042

\[ {}y^{\prime }-y = 1+3 \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

17043

\[ {}y^{\prime }-\frac {3 y}{2} = 3 t +3 \,{\mathrm e}^{t} \]
i.c.

[[_linear, ‘class A‘]]

17044

\[ {}y^{\prime }-6 y = t^{6} {\mathrm e}^{6 t} \]

[[_linear, ‘class A‘]]

17045

\[ {}y^{\prime }+\frac {y}{t} = 3 \cos \left (2 t \right ) \]

[_linear]

17046

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

17047

\[ {}2 y^{\prime }+y = 3 t^{2} \]

[[_linear, ‘class A‘]]

17048

\[ {}\left (t -3\right ) y^{\prime }+\ln \left (t \right ) y = 2 t \]
i.c.

[_linear]

17049

\[ {}t \left (-4+t \right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

17050

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]
i.c.

[_linear]

17051

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

17052

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]
i.c.

[_linear]

17053

\[ {}\ln \left (t \right ) y^{\prime }+y = \cot \left (t \right ) \]
i.c.

[_linear]

17058

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

[_separable]

17059

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

[_separable]

17060

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

17062

\[ {}y^{\prime } = -\frac {4 t}{y} \]
i.c.

[_separable]

17063

\[ {}y^{\prime } = 2 t y^{2} \]
i.c.

[_separable]

17064

\[ {}y^{\prime }+y^{3} = 0 \]
i.c.

[_quadrature]

17065

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]
i.c.

[_separable]

17066

\[ {}y^{\prime } = t y \left (3-y\right ) \]

[_separable]

17071

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

[_separable]

17073

\[ {}3 x^{2}-2 x y+2+\left (6 y^{2}-x^{2}+3\right ) y^{\prime } = 0 \]

[_exact, _rational]

17074

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_separable]

17075

\[ {}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17077

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )+2 \cos \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

17079

\[ {}y \,{\mathrm e}^{x y} \cos \left (2 x \right )-2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+2 x +\left (x \,{\mathrm e}^{x y} \cos \left (2 x \right )-3\right ) y^{\prime } = 0 \]

[_exact]

17080

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

[_linear]

17082

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17083

\[ {}2 x -y+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17084

\[ {}9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

17085

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

[_separable]

17086

\[ {}\frac {\sin \left (y\right )}{y}-2 \,{\mathrm e}^{-x} \sin \left (x \right )+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

unknown

17087

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

unknown

17088

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

17089

\[ {}3 x^{2} y+2 x y+y^{3}+\left (y^{2}+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational]

17090

\[ {}y^{\prime } = {\mathrm e}^{2 x}+y-1 \]

[[_linear, ‘class A‘]]

17092

\[ {}y+\left (2 x y-{\mathrm e}^{-2 y}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

17093

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17095

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

17096

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17097

\[ {}y y^{\prime } = x +1 \]

[_separable]

17098

\[ {}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1 \]

[_separable]

17100

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

[_separable]

17106

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17107

\[ {}x y y^{\prime } = y^{2}+x^{2} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17109

\[ {}t y^{\prime }+y = t^{2} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17113

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

[_separable]

17115

\[ {}y^{\prime } = y+\sqrt {y} \]

[_quadrature]

17116

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

[_quadrature]

17117

\[ {}y^{\prime } = a y+b y^{3} \]

[_quadrature]

17120

\[ {}1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

17122

\[ {}x y^{\prime }+\left (x +1\right ) y = x \]

[_linear]

17123

\[ {}y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

[_Bernoulli]

17124

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

[_separable]

17125

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

[_separable]

17126

\[ {}2 x y y^{\prime }+\ln \left (x \right ) = -y^{2}-1 \]

[_exact, _Bernoulli]

17127

\[ {}\left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

[_linear]

17128

\[ {}x y^{\prime } = -\frac {1}{\ln \left (x \right )} \]

[_quadrature]

17129

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17130

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17131

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

[_quadrature]

17219

\[ {}x^{\prime } = \frac {x \sqrt {6 x-9}}{3} \]
i.c.

[_quadrature]

17567

\[ {}y^{\prime } = 2 \]

[_quadrature]

17568

\[ {}y^{\prime } = -x^{3} \]

[_quadrature]

17571

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

17573

\[ {}y^{\prime } = \frac {2 x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17574

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17575

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17576

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17577

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

17583

\[ {}y^{\prime } \cos \left (x \right ) = y \sin \left (x \right )+\cos \left (x \right )^{2} \]

[_linear]

17584

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

17585

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

17586

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17587

\[ {}x y^{\prime }+y = x y^{2} \ln \left (x \right ) \]

[_Bernoulli]

17588

\[ {}y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y} = 0 \]

[_rational, _Bernoulli]

17590

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17591

\[ {}y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

17592

\[ {}y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

17597

\[ {}y^{\prime } = \frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \]

[[_homogeneous, ‘class G‘], _rational]

17599

\[ {}y^{\prime } = k y+f \left (x \right ) \]

[[_linear, ‘class A‘]]

17601

\[ {}\frac {x +y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {y-x y^{\prime }}{y^{2}+x^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact]

17602

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17603

\[ {}\frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

17604

\[ {}\frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact, _rational]

17605

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17606

\[ {}\left (y^{2} x^{2}-1\right ) y^{\prime }+2 x y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17608

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

17609

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

[_linear]

17610

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

[_Bernoulli]

17612

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

[_quadrature]

17614

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+y^{2} x^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17633

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

17634

\[ {}y^{\prime } = y \ln \left (y\right ) \]

[_quadrature]

17635

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

[_quadrature]

17732

\[ {}y^{\prime } = 2 x \]

[_quadrature]

17733

\[ {}x y^{\prime } = 2 y \]

[_separable]

17734

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

17735

\[ {}y^{\prime } = k y \]

[_quadrature]

17738

\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-y^{2} x^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

17739

\[ {}x y^{\prime } = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

17740

\[ {}y^{\prime } = \frac {x y}{y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17741

\[ {}2 x y y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17743

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17744

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

17745

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

17746

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

17747

\[ {}x y^{\prime } = 1 \]

[_quadrature]

17748

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

17749

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

17750

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

17751

\[ {}y^{\prime } \left (x^{2}+1\right ) = x \]

[_quadrature]

17752

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

17753

\[ {}y^{\prime } \left (x^{2}+1\right ) = \arctan \left (x \right ) \]

[_quadrature]

17754

\[ {}x y y^{\prime } = y-1 \]

[_separable]

17755

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

17757

\[ {}y^{\prime } = 2 x y \]

[_separable]

17758

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

17759

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

17760

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

[_separable]

17761

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

[_separable]

17762

\[ {}1+y^{2}+y^{\prime } \left (x^{2}+1\right ) = 0 \]

[_separable]

17763

\[ {}y \ln \left (y\right )-x y^{\prime } = 0 \]

[_separable]

17764

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

17765

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

17766

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

17767

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

17768

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

17769

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

17770

\[ {}y^{\prime } = {\mathrm e}^{-2 y+3 x} \]
i.c.

[_separable]

17771

\[ {}x y^{\prime } = 2 x^{2}+1 \]
i.c.

[_quadrature]

17773

\[ {}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

17774

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[_quadrature]

17776

\[ {}y^{\prime } = 1+2 x y \]

[_linear]

17779

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

[_quadrature]

17780

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17781

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17783

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

17785

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17786

\[ {}x y^{\prime } = 2 x +3 y \]

[_linear]

17788

\[ {}x^{2} y^{\prime } = y^{2}+2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17789

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17796

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

17797

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17798

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17799

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17800

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17801

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

17802

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

17803

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

[_separable]

17804

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

17805

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

17806

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

17807

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

17808

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 y^{2} x^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17809

\[ {}1 = \frac {y}{1-y^{2} x^{2}}+\frac {x y^{\prime }}{1-y^{2} x^{2}} \]

[_exact, _rational, _Riccati]

17810

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

17811

\[ {}\frac {x y^{\prime }+y}{1-y^{2} x^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

17812

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

17814

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

17815

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

17816

\[ {}\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

17817

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17818

\[ {}\frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

17819

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17820

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17821

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

17822

\[ {}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17823

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17824

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

17825

\[ {}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17826

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17827

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17828

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

17829

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17830

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

17831

\[ {}-y+x y^{\prime } = \left (1+y^{2}\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _rational]

17832

\[ {}y-x y^{\prime } = x y^{3} y^{\prime } \]

[_separable]

17833

\[ {}x y^{\prime } = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

17834

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17836

\[ {}y^{2}-y+x y^{\prime } = 0 \]

[_separable]

17837

\[ {}-y+x y^{\prime } = 2 x^{2}-3 \]

[_linear]

17838

\[ {}x y^{\prime }+y = \sqrt {x y}\, y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17839

\[ {}y-x y^{2}+\left (y^{2} x^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

17840

\[ {}-y+x y^{\prime } = x^{2} y^{4} \left (x y^{\prime }+y\right ) \]

[[_homogeneous, ‘class G‘], _rational]

17841

\[ {}x y^{\prime }+y+x^{2} y^{5} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

17842

\[ {}2 x y^{2}-y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

17843

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

[_linear]

17845

\[ {}x y^{\prime }-3 y = x^{4} \]

[_linear]

17846

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

17847

\[ {}y^{\prime } \left (x^{2}+1\right )+2 x y = \cot \left (x \right ) \]

[_linear]

17848

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

17849

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

17850

\[ {}2 y-x^{3} = x y^{\prime } \]

[_linear]

17851

\[ {}y-x +x y \cot \left (x \right )+x y^{\prime } = 0 \]

[_linear]

17852

\[ {}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]

[_linear]

17853

\[ {}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]

[_linear]

17854

\[ {}y-2 x y-x^{2}+x^{2} y^{\prime } = 0 \]

[_linear]

17855

\[ {}x y^{\prime }+y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17856

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

17857

\[ {}x y^{\prime }+y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17858

\[ {}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17859

\[ {}y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

17861

\[ {}x y^{\prime } = 2 x^{2} y+y \ln \left (y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17862

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

17876

\[ {}\left (1-x y\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17880

\[ {}x^{2} y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

17882

\[ {}x y^{\prime }+y = y^{2}+x^{2} y^{\prime } \]

[_separable]

17883

\[ {}x y y^{\prime } = y^{2}+x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17884

\[ {}\left ({\mathrm e}^{x}-3 y^{2} x^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17886

\[ {}y+x^{2} = x y^{\prime } \]

[_linear]

17887

\[ {}x y^{\prime }+y = x^{2} \cos \left (x \right ) \]

[_linear]

17889

\[ {}\cos \left (x +y\right ) = x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

17891

\[ {}y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[_exact]

17892

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

17893

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

17894

\[ {}y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17895

\[ {}y^{\prime } \left (x^{2}+1\right )+2 x y = 4 x^{3} \]

[_linear]

17896

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{x} \cos \left (y\right ) y^{\prime } = y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } \]

[_exact]

17899

\[ {}{\mathrm e}^{x} \left (x +1\right ) = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime } \]

[‘y=_G(x,y’)‘]

17900

\[ {}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17901

\[ {}y^{\prime } = 1+3 y \tan \left (x \right ) \]

[_linear]

17903

\[ {}y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

17904

\[ {}y^{\prime } = \frac {x +2 y+2}{y-2 x} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17905

\[ {}3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0 \]

[_separable]

17906

\[ {}\frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17907

\[ {}\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0 \]

[_linear]

17908

\[ {}x y^{2}+y+x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

17910

\[ {}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

17911

\[ {}x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3} \]

[_linear]

17912

\[ {}y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

17913

\[ {}{\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime } = 0 \]

[_linear]

17914

\[ {}3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

17916

\[ {}3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17918

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

[_Bernoulli]

17919

\[ {}\frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

17921

\[ {}x y+y-1+x y^{\prime } = 0 \]

[_linear]

17922

\[ {}x^{2} y^{\prime }-y^{2} = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

17924

\[ {}x^{\prime }+x \cot \left (y \right ) = \sec \left (y \right ) \]

[_linear]

18164

\[ {}x^{\prime } = 3 t^{2}+4 t \]
i.c.

[_quadrature]

18165

\[ {}x^{\prime } = b \,{\mathrm e}^{t} \]
i.c.

[_quadrature]

18166

\[ {}x^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

18167

\[ {}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]
i.c.

[_quadrature]

18168

\[ {}x^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

18169

\[ {}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]
i.c.

[_quadrature]

18171

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18172

\[ {}x^{\prime } = \left (x-1\right )^{2} \]
i.c.

[_quadrature]

18173

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]
i.c.

[_quadrature]

18174

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

18175

\[ {}x^{\prime } = \tan \left (x\right ) \]
i.c.

[_quadrature]

18176

\[ {}3 t^{2} x-x t +\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0 \]

[_separable]

18177

\[ {}1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0 \]

[_separable]

18179

\[ {}\left (t^{2}-x^{2}\right ) x^{\prime } = x t \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18180

\[ {}{\mathrm e}^{3 t} x^{\prime }+3 x \,{\mathrm e}^{3 t} = 2 t \]

[[_linear, ‘class A‘]]

18181

\[ {}2 t +3 x+\left (3 t -x\right ) x^{\prime } = t^{2} \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

18182

\[ {}x^{\prime }+2 x = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

18183

\[ {}x^{\prime }+x \tan \left (t \right ) = 0 \]

[_separable]

18184

\[ {}x^{\prime }-x \tan \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

18185

\[ {}t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x = t^{3} \]

[_linear]

18186

\[ {}x^{\prime }+2 x t +t x^{4} = 0 \]

[_separable]

18187

\[ {}t x^{\prime }+x \ln \left (t \right ) = t^{2} \]

[_linear]

18188

\[ {}t x^{\prime }+x g \left (t \right ) = h \left (t \right ) \]

[_linear]

18190

\[ {}x^{\prime } = -\lambda x \]

[_quadrature]

18208

\[ {}y^{\prime }+c y = a \]

[_quadrature]

18211

\[ {}y^{\prime } = \frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \]

[_separable]

18213

\[ {}v^{\prime }+u^{2} v = \sin \left (u \right ) \]

[_linear]

18215

\[ {}v^{\prime }+\frac {2 v}{u} = 3 \]

[_linear]

18217

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

unknown

18218

\[ {}y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18219

\[ {}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right ) \]

[_quadrature]

18220

\[ {}y^{\prime } = 1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )} \]

[_separable]

18221

\[ {}y^{2} = x \left (y-x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18223

\[ {}2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18226

\[ {}\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18227

\[ {}\left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime } = \frac {T}{t \sqrt {t^{2}-T^{2}}}-t \]

[_exact]

18228

\[ {}y^{\prime }+x y = x \]

[_separable]

18229

\[ {}y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

[_linear]

18230

\[ {}y^{\prime }+\frac {y}{x} = \frac {\sin \left (x \right )}{y^{3}} \]

[_Bernoulli]

18231

\[ {}p^{\prime } = \frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )} \]

[_linear]

18232

\[ {}\left (T \ln \left (t \right )-1\right ) T = t T^{\prime } \]

[_Bernoulli]

18233

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

18242

\[ {}\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k} \]

[_quadrature]

18245

\[ {}y^{\prime } = x \left (y^{2} a +b \right ) \]

[_separable]

18246

\[ {}n^{\prime } = \left (n^{2}+1\right ) x \]

[_separable]

18247

\[ {}v^{\prime }+\frac {2 v}{u} = 3 v \]

[_separable]

18250

\[ {}\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}} \]

[_separable]

18251

\[ {}y^{\prime } = 1+\frac {2 y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18252

\[ {}v^{\prime }+2 u v = 2 u \]

[_separable]

18253

\[ {}1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0 \]

[_separable]

18264

\[ {}5 x^{\prime }+x = \sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

18280

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

18295

\[ {}y^{\prime }+\frac {y}{x} = -x^{2}+1 \]

[_linear]

18296

\[ {}y^{\prime }+y \cot \left (x \right ) = \csc \left (x \right )^{2} \]

[_linear]

18297

\[ {}y^{\prime } = x -y \]

[[_linear, ‘class A‘]]

18299

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

[_linear]

18300

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}-1\right ) y = x^{3} \]

[_linear]

18301

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

18302

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

18303

\[ {}y^{\prime }+y \sin \left (x \right ) = y^{2} \sin \left (x \right ) \]

[_separable]

18304

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

[_separable]

18306

\[ {}3 y^{2} y^{\prime }+y^{3} = x -1 \]

[_rational, _Bernoulli]

18308

\[ {}y \sqrt {x^{2}-1}+x \sqrt {y^{2}-1}\, y^{\prime } = 0 \]

[_separable]

18309

\[ {}\left (1+{\mathrm e}^{y}\right ) \cos \left (x \right )+{\mathrm e}^{y} \sin \left (x \right ) y^{\prime } = 0 \]

[_separable]

18311

\[ {}y \left (y+3\right ) y^{\prime } = x \left (3+2 y\right ) \]

[_separable]

18312

\[ {}x^{3}-3 x^{2} y+5 x y^{2}-7 y^{3}+\left (y^{4}+2 y^{2}-x^{3}+5 x^{2} y-21 x y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

18313

\[ {}x^{3}+4 x y+y^{2}+\left (2 x^{2}+2 x y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

18314

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

18315

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

18317

\[ {}5 x y y^{\prime }-y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18320

\[ {}5 x y y^{\prime }-4 x^{2}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18321

\[ {}\left (x^{2}-2 x y\right ) y^{\prime }+x^{2}-3 x y+2 y^{2} = 0 \]

[_linear]

18323

\[ {}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18403

\[ {}\left (1-x \right ) y^{\prime }-1-y = 0 \]

[_separable]

18404

\[ {}y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0 \]

unknown

18405

\[ {}y-x y^{\prime } = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

18406

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

18407

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18409

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18413

\[ {}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

18414

\[ {}x +y y^{\prime }+\frac {-y+x y^{\prime }}{y^{2}+x^{2}} = 0 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

18415

\[ {}a^{2}-2 x y-y^{2}-\left (x +y\right )^{2} y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

18416

\[ {}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18417

\[ {}\left (2 x^{2} y+4 x^{3}-12 x y^{2}+3 y^{2}-x \,{\mathrm e}^{y}+{\mathrm e}^{2 x}\right ) y^{\prime }+12 x^{2} y+2 x y^{2}+4 x^{3}-4 y^{3}+2 y \,{\mathrm e}^{2 x}-{\mathrm e}^{y} = 0 \]

[_exact]

18418

\[ {}y-x y^{\prime }+\ln \left (x \right ) = 0 \]

[_linear]

18419

\[ {}\left (x y+1\right ) y-\left (1-x y\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18420

\[ {}a \left (x y^{\prime }+2 y\right ) = x y y^{\prime } \]

[_separable]

18421

\[ {}x^{4} {\mathrm e}^{x}-2 m x y^{2}+2 m \,x^{2} y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _Bernoulli]

18422

\[ {}y \left ({\mathrm e}^{x}+2 x y\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

18423

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18424

\[ {}y \left (x y+2 y^{2} x^{2}\right )+x \left (x y-y^{2} x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18425

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

18426

\[ {}x^{2}+y^{2}-x^{2} y y^{\prime } = 0 \]

[_rational, _Bernoulli]

18427

\[ {}3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18428

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

18429

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18432

\[ {}x y^{\prime }-a y = x +1 \]

[_linear]

18433

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

18434

\[ {}\cos \left (x \right )^{2} y^{\prime }+y = \tan \left (x \right ) \]

[_linear]

18435

\[ {}\left (x +1\right ) y^{\prime }-n y = {\mathrm e}^{x} \left (x +1\right )^{n +1} \]

[_linear]

18436

\[ {}y^{\prime } \left (x^{2}+1\right )+2 x y = 4 x^{2} \]

[_linear]

18437

\[ {}y^{\prime }+\frac {y}{x} = x^{2} y^{6} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18438

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

18441

\[ {}3 x \left (-x^{2}+1\right ) y^{2} y^{\prime }+\left (2 x^{2}-1\right ) y^{3} = a \,x^{3} \]

[_rational, _Bernoulli]

18445

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

[_separable]

18446

\[ {}\left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

[_separable]

18447

\[ {}y^{\prime }+\frac {\left (-2 x +1\right ) y}{x^{2}} = 1 \]

[_linear]

18448

\[ {}3 y^{\prime }+\frac {2 y}{x +1} = \frac {x^{3}}{y^{2}} \]

[_rational, _Bernoulli]

18449

\[ {}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18450

\[ {}y^{\prime }+\frac {y}{\sqrt {-x^{2}+1}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

18451

\[ {}x y^{\prime }+\frac {y^{2}}{x} = y \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

18452

\[ {}x \left (x^{2}+y^{2}-a^{2}\right )+y \left (x^{2}-y^{2}-b^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

18453

\[ {}y^{\prime }+\frac {4 x y}{x^{2}+1} = \frac {1}{\left (x^{2}+1\right )^{3}} \]

[_linear]

18454

\[ {}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18455

\[ {}x \left (-x^{2}+1\right ) y^{\prime }+\left (2 x^{2}-1\right ) y = a \,x^{3} \]

[_linear]

18456

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

18457

\[ {}x +y y^{\prime } = m \left (-y+x y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18459

\[ {}\left (x +1\right ) y^{\prime }+1 = 2 \,{\mathrm e}^{y} \]

[_separable]

18462

\[ {}\left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime } = 3 x y^{2}-x^{2} \]

[_exact, _rational]

18463

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

18465

\[ {}y y^{\prime } = a x \]

[_separable]

18466

\[ {}\sqrt {a^{2}+x^{2}}\, y^{\prime }+y = \sqrt {a^{2}+x^{2}}-x \]

[_linear]

18467

\[ {}\left (x +y\right ) y^{\prime }+x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18468

\[ {}y y^{\prime }+b y^{2} = a \cos \left (x \right ) \]

[_Bernoulli]

18469

\[ {}2 x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18470

\[ {}y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

18472

\[ {}\left (x^{3} y^{3}+y^{2} x^{2}+x y+1\right ) y+\left (x^{3} y^{3}-y^{2} x^{2}-x y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18474

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18475

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

18477

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18479

\[ {}{y^{\prime }}^{3} \left (x +2 y\right )+3 {y^{\prime }}^{2} \left (x +y\right )+\left (2 x +y\right ) y^{\prime } = 0 \]

[_quadrature]

18481

\[ {}4 y^{2} {y^{\prime }}^{2}+2 y^{\prime } x y \left (3 x +1\right )+3 x^{3} = 0 \]

[_separable]

18482

\[ {}{y^{\prime }}^{2}-7 y^{\prime }+12 = 0 \]

[_quadrature]

18497

\[ {}x y \left (y-x y^{\prime }\right ) = x +y y^{\prime } \]

[_separable]

18501

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]

18503

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

18513

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18515

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

18517

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+y^{2} x^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]