2.2.164 Problems 16301 to 16400

Table 2.329: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16301

\[ {}x^{\prime \prime }+64 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.114

16302

\[ {}x^{\prime \prime }+100 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.177

16303

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.874

16304

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.117

16305

\[ {}x^{\prime \prime }+16 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.087

16306

\[ {}x^{\prime \prime }+256 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.271

16307

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.820

16308

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.020

16309

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.421

16310

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.392

16311

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.410

16312

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.755

16313

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.772

16314

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.652

16315

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.722

16316

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5.174

16317

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

72.616

16318

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ -t +1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

29.528

16319

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.439

16320

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.056

16321

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

10.432

16322

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

9.350

16323

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

76.201

16324

\[ {}\left [\begin {array}{c} x^{\prime }=6 \\ y^{\prime }=\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.264

16325

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=1 \end {array}\right ] \]

system_of_ODEs

0.373

16326

\[ {}\left [\begin {array}{c} x^{\prime }=0 \\ y^{\prime }=-2 y \end {array}\right ] \]

system_of_ODEs

0.295

16327

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2} \\ y^{\prime }={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.022

16328

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1} \\ x_{2}^{\prime }=1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.516

16329

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+1 \\ x_{2}^{\prime }=x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.595

16330

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+6 y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.368

16331

\[ {}\left [\begin {array}{c} x^{\prime }=8 x-y \\ y^{\prime }=x+6 y \end {array}\right ] \]

system_of_ODEs

0.309

16332

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.402

16333

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=-x+2 y \end {array}\right ] \]

system_of_ODEs

0.433

16334

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+1 \end {array}\right ] \]

system_of_ODEs

0.573

16335

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\sin \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

0.607

16336

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

2.314

16337

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

[[_2nd_order, _missing_x]]

0.904

16338

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.487

16339

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1.990

16340

\[ {}y^{\prime } = y^{2}+x^{2} \]

[[_Riccati, _special]]

1.013

16341

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2.958

16342

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

4.890

16343

\[ {}y^{\prime } = \sqrt {x -y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.941

16344

\[ {}y^{\prime } = \sqrt {x^{2}-y}-x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

5.367

16345

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

38.752

16346

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.874

16347

\[ {}y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

[‘y=_G(x,y’)‘]

2.814

16348

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

1.789

16349

\[ {}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.589

16350

\[ {}y^{\prime } = \sin \left (x y\right ) \]
i.c.

[‘y=_G(x,y’)‘]

1.403

16351

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

[_linear]

1.141

16352

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

1.066

16353

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

[_separable]

1.254

16354

\[ {}y^{\prime } = x +1 \]

[_quadrature]

0.255

16355

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

0.962

16356

\[ {}y^{\prime } = y-x \]

[[_linear, ‘class A‘]]

0.979

16357

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

0.976

16358

\[ {}y^{\prime } = \left (y-1\right )^{2} \]

[_quadrature]

0.870

16359

\[ {}y^{\prime } = \left (y-1\right ) x \]

[_separable]

1.081

16360

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

1.002

16361

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.420

16362

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

1.013

16363

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

0.986

16364

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

1.402

16365

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.645

16366

\[ {}y^{\prime } = 1-x \]

[_quadrature]

0.260

16367

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

0.956

16368

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

0.974

16369

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

1.584

16370

\[ {}y^{\prime } = 1 \]

[_quadrature]

0.447

16371

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.277

16372

\[ {}y^{\prime } = y \]

[_quadrature]

0.966

16373

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

0.964

16374

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

1.378

16375

\[ {}y^{\prime } = y^{2}+x \]
i.c.

[[_Riccati, _special]]

15.266

16376

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

1.274

16377

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]
i.c.

[[_linear, ‘class A‘]]

1.270

16378

\[ {}x y^{\prime } = 2 x -y \]
i.c.

[_linear]

2.497

16379

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

1.814

16380

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

2.125

16381

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

2.140

16382

\[ {}1+y^{2} = x y^{\prime } \]

[_separable]

1.565

16383

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]

[_separable]

2.751

16384

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

3.413

16385

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

0.918

16386

\[ {}y \ln \left (y\right )+x y^{\prime } = 1 \]
i.c.

[_separable]

2.701

16387

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

1.875

16388

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

2.872

16389

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

[_separable]

2.353

16390

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left (1+{\mathrm e}^{2 x}\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.618

16391

\[ {}y^{2} \sin \left (x \right )+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.139

16392

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.373

16393

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

0.753

16394

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4.360

16395

\[ {}x y^{\prime }+y = a \left (x y+1\right ) \]
i.c.

[_linear]

1.084

16396

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

3.432

16397

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.341

16398

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

[_quadrature]

0.468

16399

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

[_quadrature]

0.397

16400

\[ {}\sin \left (y^{\prime }\right ) = x \]

[_quadrature]

0.254