2.2.165 Problems 16401 to 16500

Table 2.331: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16401

\[ {}\ln \left (y^{\prime }\right ) = x \]

[_quadrature]

0.289

16402

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

[_quadrature]

0.408

16403

\[ {}{\mathrm e}^{y^{\prime }} = x \]

[_quadrature]

0.258

16404

\[ {}\tan \left (y^{\prime }\right ) = x \]

[_quadrature]

0.340

16405

\[ {}x^{2} y^{\prime } \cos \left (y\right )+1 = 0 \]
i.c.

[_separable]

2.440

16406

\[ {}x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]
i.c.

[_separable]

3.421

16407

\[ {}x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]
i.c.

[_separable]

3.668

16408

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]
i.c.

[_separable]

10.291

16409

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

1.326

16410

\[ {}\left (x +1\right ) y^{\prime } = y-1 \]

[_separable]

1.442

16411

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

1.160

16412

\[ {}x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]
i.c.

[_separable]

11.876

16413

\[ {}x y^{\prime } = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.607

16414

\[ {}x -y+x y^{\prime } = 0 \]

[_linear]

1.246

16415

\[ {}x y^{\prime } = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.139

16416

\[ {}x^{2} y^{\prime } = y^{2}-x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.742

16417

\[ {}x y^{\prime } = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.293

16418

\[ {}2 x^{2} y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.765

16419

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.636

16420

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.680

16421

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

1.101

16422

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.335

16423

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.613

16424

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.474

16425

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.727

16426

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.786

16427

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.443

16428

\[ {}x +y+\left (y-1+x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.422

16429

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.784

16430

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.089

16431

\[ {}y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

2.265

16432

\[ {}x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.757

16433

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

1.063

16434

\[ {}x^{2}-x y^{\prime } = y \]
i.c.

[_linear]

1.595

16435

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

2.222

16436

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

1.382

16437

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]
i.c.

[_linear]

2.171

16438

\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \]

[_linear]

1.627

16439

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]
i.c.

[_linear]

9.567

16440

\[ {}y^{\prime } x \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

[_linear]

1.420

16441

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

[[_homogeneous, ‘class G‘], _rational]

1.944

16442

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_separable]

1.578

16443

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

1.385

16444

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.444

16445

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

[_linear]

1.319

16446

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

[_linear]

1.335

16447

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \]

[[_linear, ‘class A‘]]

2.139

16448

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

1.195

16449

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]
i.c.

[_linear]

4.238

16450

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]
i.c.

[_linear]

2.385

16451

\[ {}2 x y^{\prime }-y = 1-\frac {2}{\sqrt {x}} \]
i.c.

[_linear]

1.441

16452

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]
i.c.

[_linear]

1.737

16453

\[ {}x y^{\prime }+y = 2 x \]

[_linear]

1.877

16454

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 1 \]

[_linear]

1.717

16455

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]
i.c.

[_linear]

2.675

16456

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

1.807

16457

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.266

16458

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

[[_1st_order, _with_linear_symmetries]]

1.213

16459

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

[_separable]

1.528

16460

\[ {}y^{\prime }-2 y \,{\mathrm e}^{x} = 2 \sqrt {y \,{\mathrm e}^{x}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.810

16461

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

[_Bernoulli]

4.466

16462

\[ {}2 \sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right )^{2} \]

[_Bernoulli]

8.836

16463

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.319

16464

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

2.285

16465

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

2.361

16466

\[ {}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.080

16467

\[ {}y^{\prime } \cos \left (y\right )+\sin \left (y\right ) = x +1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.755

16468

\[ {}y y^{\prime }+1 = \left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}} \]

[‘y=_G(x,y’)‘]

2.714

16469

\[ {}y^{\prime }+x \sin \left (2 y\right ) = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

5.692

16470

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

260.655

16471

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.688

16472

\[ {}\frac {x}{\sqrt {y^{2}+x^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {y^{2}+x^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

22.773

16473

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

45.977

16474

\[ {}2 x +\frac {y^{2}+x^{2}}{x^{2} y} = \frac {\left (y^{2}+x^{2}\right ) y^{\prime }}{x y^{2}} \]

[[_homogeneous, ‘class D‘], _exact, _rational]

3.559

16475

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

33.559

16476

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.369

16477

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

18.987

16478

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact]

36.066

16479

\[ {}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

52.098

16480

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10.466

16481

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

1.770

16482

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

109.534

16483

\[ {}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.318

16484

\[ {}x^{2}+y-x y^{\prime } = 0 \]

[_linear]

1.153

16485

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.655

16486

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

[_linear]

1.243

16487

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[_Bernoulli]

1.754

16488

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+y^{\prime } \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

3.762

16489

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

[_rational]

2.373

16490

\[ {}3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.313

16491

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

1.980

16492

\[ {}x -x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.163

16493

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

[_quadrature]

0.264

16494

\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left (-1+{\mathrm e}^{2 x}\right ) \]

[_separable]

0.416

16495

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

[_quadrature]

0.481

16496

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

2.954

16497

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

1.163

16498

\[ {}{y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0 \]

[[_1st_order, _with_exponential_symmetries]]

0.847

16499

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

1.193

16500

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.481