# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x], _Van_der_Pol] |
✓ |
0.224 |
|
\[
{}y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.216 |
|
\[
{}y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.502 |
|
\[
{}y^{\prime \prime }-2 x y^{\prime }+6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.514 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.590 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.603 |
|
\[
{}y^{\prime \prime }-y \cos \left (x \right ) = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.720 |
|
\[
{}x^{2} y^{\prime \prime }+6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.684 |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.141 |
|
\[
{}\left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+\left (x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.698 |
|
\[
{}\left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.727 |
|
\[
{}2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.935 |
|
\[
{}5 x y^{\prime \prime }+8 y^{\prime }-x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.746 |
|
\[
{}9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.905 |
|
\[
{}7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.886 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.378 |
|
\[
{}x y^{\prime \prime }+2 x y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.241 |
|
\[
{}y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.885 |
|
\[
{}y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.881 |
|
\[
{}y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.490 |
|
\[
{}y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.941 |
|
\[
{}x^{2} y^{\prime \prime }+7 x y^{\prime }-7 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.895 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.760 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.767 |
|
\[
{}y^{\prime \prime }+x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.482 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-k^{2}+x^{2}\right ) y = 0
\] |
[_Bessel] |
✓ |
0.890 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+k \left (k +1\right ) y = 0
\] |
[_Gegenbauer] |
✓ |
0.732 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.947 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.816 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+2 y = 0
\] |
[_Jacobi] |
✓ |
0.806 |
|
\[
{}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0
\] |
[_Laguerre] |
✓ |
0.960 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.837 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.493 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.829 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.811 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.311 |
|
\[
{}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.333 |
|
\[
{}t y^{\prime \prime }+2 y^{\prime }+t y = 0
\] |
[_Lienard] |
✓ |
0.385 |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.835 |
|
\[
{}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.852 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.866 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.835 |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+34 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.848 |
|
\[
{}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.856 |
|
\[
{}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.859 |
|
\[
{}20 y^{\prime \prime }+y^{\prime }-y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.859 |
|
\[
{}12 y^{\prime \prime }+8 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.872 |
|
\[
{}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.064 |
|
\[
{}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-8 y = -t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.065 |
|
\[
{}y^{\prime \prime }+5 y^{\prime } = 5 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.700 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.954 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
12.452 |
|
\[
{}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.475 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.408 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.037 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
11.967 |
|
\[
{}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.169 |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.086 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.125 |
|
\[
{}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.163 |
|
\[
{}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
2.269 |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2}
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
0.151 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.147 |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.365 |
|
\[
{}y^{\prime \prime }+16 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.759 |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.150 |
|
\[
{}y^{\prime \prime }-4 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.276 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.726 |
|
\[
{}y^{\prime \prime }+9 y = \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.161 |
|
\[
{}y^{\prime \prime }+y = \cos \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.253 |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.895 |
|
\[
{}y^{\prime \prime }+y = \csc \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.708 |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.118 |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.127 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.148 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.740 |
|
\[
{}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.402 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.835 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.828 |
|
\[
{}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.250 |
|
\[
{}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.133 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.203 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.305 |
|
\[
{}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
2.144 |
|
\[
{}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.131 |
|
\[
{}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.698 |
|
\[
{}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.541 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.596 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.667 |
|
\[
{}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.617 |
|
\[
{}3 x y^{\prime \prime }+11 y^{\prime }-y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.845 |
|
\[
{}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.751 |
|
\[
{}x^{2} y^{\prime \prime }-7 x y^{\prime }+\left (-2 x^{2}+7\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.247 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0
\] |
[_Jacobi] |
✓ |
0.835 |
|
\[
{}x \left (x +1\right ) y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }-10 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.852 |
|
\[
{}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1
\] |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.623 |
|
\[
{}4 x^{\prime \prime }+9 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.135 |
|
\[
{}9 x^{\prime \prime }+4 x = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
3.050 |
|