2.2.163 Problems 16201 to 16300

Table 2.327: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16201

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

2.381

16202

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

2.434

16203

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

2.377

16204

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

2.633

16205

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

2.671

16206

\[ {}y^{\prime \prime }-y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

1.846

16207

\[ {}y^{\prime \prime }-4 y = 32 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.225

16208

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]
i.c.

[[_2nd_order, _missing_x]]

1.602

16209

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 3 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.717

16210

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

1.566

16211

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.397

16212

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]
i.c.

[[_2nd_order, _missing_x]]

4.947

16213

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

3.016

16214

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _missing_y]]

2.121

16215

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

2.775

16216

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

2.466

16217

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

2.948

16218

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6.385

16219

\[ {}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

117.997

16220

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.538

16221

\[ {}y^{\prime }-4 y = t^{2} \]

[[_linear, ‘class A‘]]

1.386

16222

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.871

16223

\[ {}y^{\prime }-y = {\mathrm e}^{4 t} \]
i.c.

[[_linear, ‘class A‘]]

1.767

16224

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]
i.c.

[[_linear, ‘class A‘]]

1.591

16225

\[ {}y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

[[_linear, ‘class A‘]]

1.968

16226

\[ {}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

16227

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.973

16228

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5.902

16229

\[ {}y^{\prime \prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

2.750

16230

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

[[_2nd_order, _missing_y]]

2.263

16231

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

1.196

16232

\[ {}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.974

16233

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15.220

16234

\[ {}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.031

16235

\[ {}y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.780

16236

\[ {}y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.862

16237

\[ {}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

90.547

16238

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

54.234

16239

\[ {}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

73.198

16240

\[ {}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

33.243

16241

\[ {}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

47.358

16242

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

36.240

16243

\[ {}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

31.140

16244

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

29.794

16245

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.406

16246

\[ {}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.521

16247

\[ {}y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.737

16248

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.335

16249

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.352

16250

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.351

16251

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.354

16252

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.403

16253

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.628

16254

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.554

16255

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.530

16256

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.490

16257

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.595

16258

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.103

16259

\[ {}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.211

16260

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9.482

16261

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.664

16262

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.523

16263

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.395

16264

\[ {}y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.905

16265

\[ {}y^{\prime \prime }+4 y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.373

16266

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.773

16267

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.757

16268

\[ {}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.398

16269

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

10.015

16270

\[ {}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.009

16271

\[ {}y^{\prime \prime }+y = \tan \left (t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.684

16272

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5.849

16273

\[ {}y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.246

16274

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.500

16275

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.768

16276

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

[[_2nd_order, _with_linear_symmetries]]

4.157

16277

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.832

16278

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.327

16279

\[ {}y^{\prime \prime }+4 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.822

16280

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.153

16281

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.941

16282

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

[_Lienard]

0.149

16283

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.874

16284

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.157

16285

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.240

16286

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.515

16287

\[ {}\left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

11.208

16288

\[ {}y^{\prime \prime \prime } = 0 \]

[[_3rd_order, _quadrature]]

0.043

16289

\[ {}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.052

16290

\[ {}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.049

16291

\[ {}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.056

16292

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.054

16293

\[ {}3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.056

16294

\[ {}6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.054

16295

\[ {}y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.056

16296

\[ {}5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

[[_3rd_order, _missing_x]]

0.105

16297

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.050

16298

\[ {}y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.051

16299

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.059

16300

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

[[_high_order, _missing_x]]

0.065