# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.687 |
|
\[
{}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.814 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.616 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.162 |
|
\[
{}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.455 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.635 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.553 |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.344 |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.294 |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.320 |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.283 |
|
\[
{}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right )
\] |
[[_2nd_order, _quadrature]] |
✓ |
1.185 |
|
\[
{}y^{\prime \prime }+3 y^{\prime } = 18
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.549 |
|
\[
{}y^{\prime \prime }-y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.339 |
|
\[
{}y^{\prime \prime }-4 y = 32 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.672 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = -2
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.633 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 3 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.671 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = 4
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.797 |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.699 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = -1
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.859 |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.644 |
|
\[
{}y^{\prime \prime }-y^{\prime } = -3 t -4 \,{\mathrm e}^{2 t} t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.555 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } = 2 t^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.403 |
|
\[
{}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.690 |
|
\[
{}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t}
\] |
[[_2nd_order, _missing_y]] |
✓ |
2.022 |
|
\[
{}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.080 |
|
\[
{}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.693 |
|
\[
{}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.590 |
|
\[
{}y^{\prime }-4 y = t^{2}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.000 |
|
\[
{}y+y^{\prime } = \cos \left (2 t \right )
\] |
[[_linear, ‘class A‘]] |
✓ |
1.521 |
|
\[
{}-y+y^{\prime } = {\mathrm e}^{4 t}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.298 |
|
\[
{}y^{\prime }+4 y = {\mathrm e}^{-4 t}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.258 |
|
\[
{}y^{\prime }+4 y = t \,{\mathrm e}^{-4 t}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.563 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.664 |
|
\[
{}x^{\prime \prime }+9 x = \sin \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.953 |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.873 |
|
\[
{}y^{\prime \prime }+4 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.651 |
|
\[
{}y^{\prime \prime }+16 y^{\prime } = t
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.109 |
|
\[
{}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.501 |
|
\[
{}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.736 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.662 |
|
\[
{}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.195 |
|
\[
{}y^{\prime \prime }+16 y = \csc \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.378 |
|
\[
{}y^{\prime \prime }+16 y = \cot \left (4 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.696 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.854 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.028 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.936 |
|
\[
{}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.739 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.901 |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.891 |
|
\[
{}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.724 |
|
\[
{}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.749 |
|
\[
{}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.632 |
|
\[
{}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.811 |
|
\[
{}y^{\prime \prime }-y = 2 \sinh \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.752 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.579 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.697 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.622 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.673 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.655 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.711 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.748 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.706 |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.766 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.759 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.657 |
|
\[
{}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.264 |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.335 |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.064 |
|
\[
{}y^{\prime \prime }+9 y = \tan \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.152 |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.071 |
|
\[
{}y^{\prime \prime }+16 y = \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.965 |
|
\[
{}y^{\prime \prime }+4 y = \tan \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.891 |
|
\[
{}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.450 |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.443 |
|
\[
{}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.109 |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.890 |
|
\[
{}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.738 |
|
\[
{}y^{\prime \prime }+y = \tan \left (t \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.382 |
|
\[
{}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.629 |
|
\[
{}y^{\prime \prime }+9 y = \csc \left (3 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.097 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.611 |
|
\[
{}t^{2} y^{\prime \prime }+3 y^{\prime } t +y = \ln \left (t \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.633 |
|
\[
{}t^{2} y^{\prime \prime }+y^{\prime } t +4 y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.585 |
|
\[
{}t^{2} y^{\prime \prime }-4 y^{\prime } t -6 y = 2 \ln \left (t \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.364 |
|
\[
{}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.678 |
|
\[
{}y^{\prime \prime }+4 y = f \left (t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.845 |
|
\[
{}t^{2} y^{\prime \prime }-4 y^{\prime } t +\left (t^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.127 |
|
\[
{}t^{2} y^{\prime \prime }-4 y^{\prime } t +\left (t^{2}+6\right ) y = t^{3}+2 t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.094 |
|
\[
{}t y^{\prime \prime }+2 y^{\prime }+t y = 0
\] |
[_Lienard] |
✓ |
0.138 |
|
\[
{}t y^{\prime \prime }+2 y^{\prime }+t y = -t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.069 |
|
\[
{}4 t^{2} y^{\prime \prime }+4 y^{\prime } t +\left (16 t^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.124 |
|
\[
{}4 t^{2} y^{\prime \prime }+4 y^{\prime } t +\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.277 |
|
\[
{}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-y^{\prime } t +y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.433 |
|
\[
{}\left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.404 |
|
\[
{}y^{\prime \prime \prime } = 0
\] |
[[_3rd_order, _quadrature]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.083 |
|
\[
{}8 y^{\prime \prime \prime }+y^{\prime \prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.081 |
|
\[
{}y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.083 |
|
\[
{}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.079 |
|