2.2.163 Problems 16201 to 16300

Table 2.327: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16201

\[ {}y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x], _Van_der_Pol]

0.224

16202

\[ {}y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.216

16203

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.502

16204

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.514

16205

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.590

16206

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.603

16207

\[ {}y^{\prime \prime }-y \cos \left (x \right ) = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.720

16208

\[ {}x^{2} y^{\prime \prime }+6 y = 0 \]

[[_Emden, _Fowler]]

0.684

16209

\[ {}x \left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.141

16210

\[ {}\left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.698

16211

\[ {}\left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.727

16212

\[ {}2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.935

16213

\[ {}5 x y^{\prime \prime }+8 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.746

16214

\[ {}9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.905

16215

\[ {}7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.886

16216

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.378

16217

\[ {}x y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.241

16218

\[ {}y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.885

16219

\[ {}y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.881

16220

\[ {}y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.490

16221

\[ {}y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.941

16222

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }-7 y = 0 \]

[[_Emden, _Fowler]]

0.895

16223

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.760

16224

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.767

16225

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.482

16226

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-k^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

0.890

16227

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+k \left (k +1\right ) y = 0 \]

[_Gegenbauer]

0.732

16228

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.947

16229

\[ {}x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.816

16230

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

0.806

16231

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

[_Laguerre]

0.960

16232

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.837

16233

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.493

16234

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

0.829

16235

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.811

16236

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.311

16237

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.333

16238

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

[_Lienard]

0.385

16239

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

0.835

16240

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

0.852

16241

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.866

16242

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.835

16243

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

[[_2nd_order, _missing_x]]

1.848

16244

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.856

16245

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.859

16246

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.859

16247

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.872

16248

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.064

16249

\[ {}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.072

16250

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.070

16251

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

[[_2nd_order, _with_linear_symmetries]]

1.065

16252

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

[[_2nd_order, _missing_y]]

1.700

16253

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

[[_2nd_order, _missing_y]]

1.954

16254

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.452

16255

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.475

16256

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

[[_2nd_order, _missing_y]]

1.408

16257

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1.037

16258

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

11.967

16259

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.169

16260

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.086

16261

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

0.125

16262

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.163

16263

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

2.269

16264

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

[[_high_order, _with_linear_symmetries]]

0.151

16265

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.147

16266

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.365

16267

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.759

16268

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.150

16269

\[ {}y^{\prime \prime }-4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.276

16270

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.726

16271

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.161

16272

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.253

16273

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.895

16274

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.708

16275

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.118

16276

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.127

16277

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.148

16278

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.740

16279

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.402

16280

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

0.835

16281

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.828

16282

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1.250

16283

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

1.133

16284

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.203

16285

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.305

16286

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2.144

16287

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2.131

16288

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

[[_Emden, _Fowler]]

2.698

16289

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

[[_2nd_order, _with_linear_symmetries]]

1.541

16290

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.596

16291

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.667

16292

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.617

16293

\[ {}3 x y^{\prime \prime }+11 y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.845

16294

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.751

16295

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+\left (-2 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.247

16296

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0 \]

[_Jacobi]

0.835

16297

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }-10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.852

16298

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]
i.c.

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.623

16299

\[ {}4 x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.135

16300

\[ {}9 x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.050