2.2.137 Problems 13601 to 13700

Table 2.275: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13601

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.674

13602

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.240

13603

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.205

13604

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

[[_2nd_order, _missing_x]]

0.609

13605

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

[[_high_order, _missing_y]]

0.131

13606

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.037

13607

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.561

13608

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.334

13609

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

[[_high_order, _linear, _nonhomogeneous]]

0.131

13610

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

[[_2nd_order, _quadrature]]

1.520

13611

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.490

13612

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.268

13613

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

[[_high_order, _with_linear_symmetries]]

0.163

13614

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

[[_high_order, _missing_y]]

0.158

13615

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.319

13616

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

[[_2nd_order, _missing_y]]

0.596

13617

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.368

13618

\[ {}y^{\prime \prime } = 2 y^{3} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.349

13619

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.273

13620

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x \end {array}\right ] \]
i.c.

system_of_ODEs

0.396

13621

\[ {}\left [\begin {array}{c} x^{\prime }+5 x+y={\mathrm e}^{t} \\ y^{\prime }-x-3 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.885

13622

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=z \\ z^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.844

13623

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.049

13624

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

[_separable]

1.539

13625

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

[_separable]

1.808

13626

\[ {}y^{\prime } = \sin \left (x y\right ) \]

[‘y=_G(x,y’)‘]

1.415

13627

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

[_separable]

2.281

13628

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.435

13629

\[ {}x y^{\prime }+y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.273

13630

\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

[‘y=_G(x,y’)‘]

1.846

13631

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

[_separable]

1.263

13632

\[ {}y^{\prime } = \ln \left (x y\right ) \]

[‘y=_G(x,y’)‘]

0.700

13633

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

[_separable]

2.386

13634

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.881

13635

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.048

13636

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5.481

13637

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

[[_high_order, _missing_y]]

0.155

13638

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.046

13639

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.047

13640

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

[_linear]

39.327

13641

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.048

13642

\[ {}y y^{\prime } = 1 \]

[_quadrature]

1.300

13643

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

[‘y=_G(x,y’)‘]

1.551

13644

\[ {}5 y^{\prime }-x y = 0 \]

[_separable]

1.199

13645

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.325

13646

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

13647

\[ {}y^{\prime \prime \prime } = 1 \]

[[_3rd_order, _quadrature]]

0.095

13648

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.495

13649

\[ {}y^{\prime \prime } = y+x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.020

13650

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

[NONE]

0.052

13651

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

[‘y=_G(x,y’)‘]

6.103

13652

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.051

13653

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

[NONE]

0.133

13654

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.481

13655

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

[NONE]

0.023

13656

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.114

13657

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.114

13658

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

0.831

13659

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.077

13660

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.208

13661

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cot \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.148

13662

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.066

13663

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

13664

\[ {}\sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.013

13665

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.775

13666

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.281

13667

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.625

13668

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.127

13669

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.030

13670

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.854

13671

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.591

13672

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = -2 x +1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.905

13673

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.701

13674

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.606

13675

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.529

13676

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.643

13677

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.468

13678

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.231

13679

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.352

13680

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.162

13681

\[ {}x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.128

13682

\[ {}\frac {x y^{\prime \prime }}{1+y}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}} = x \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

1.451

13683

\[ {}\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = y \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

79.734

13684

\[ {}y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.661

13685

\[ {}\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.546

13686

\[ {}\left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.974

13687

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.922

13688

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

[[_2nd_order, _with_linear_symmetries]]

3.451

13689

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x +1}-\frac {\left (x +2\right ) y}{x^{2} \left (x +1\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.285

13690

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.351

13691

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.433

13692

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9.389

13693

\[ {}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.327

13694

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.754

13695

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.294

13696

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.311

13697

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.234

13698

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.289

13699

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.247

13700

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.340