2.2.136 Problems 13501 to 13600

Table 2.273: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13501

\(\left [\begin {array}{cc} 7 & -2 \\ 26 & -1 \end {array}\right ]\)

Eigenvectors

0.207

13502

\(\left [\begin {array}{cc} 9 & 2 \\ 2 & 6 \end {array}\right ]\)

Eigenvectors

0.163

13503

\(\left [\begin {array}{cc} 7 & 1 \\ -4 & 11 \end {array}\right ]\)

Eigenvectors

0.116

13504

\(\left [\begin {array}{cc} 2 & -3 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

0.190

13505

\(\left [\begin {array}{cc} 6 & 0 \\ 0 & -13 \end {array}\right ]\)

Eigenvectors

0.142

13506

\(\left [\begin {array}{cc} 4 & -2 \\ 1 & 2 \end {array}\right ]\)

Eigenvectors

0.184

13507

\(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

0.102

13508

\(\left [\begin {array}{cc} -7 & 6 \\ 12 & -1 \end {array}\right ]\)

Eigenvectors

0.146

13509

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+14 y \\ y^{\prime }=7 x+y \end {array}\right ] \]

system_of_ODEs

0.346

13510

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=-5 x-3 y \end {array}\right ] \]

system_of_ODEs

0.305

13511

\[ {}\left [\begin {array}{c} x^{\prime }=11 x-2 y \\ y^{\prime }=3 x+4 y \end {array}\right ] \]

system_of_ODEs

0.385

13512

\[ {}\left [\begin {array}{c} x^{\prime }=x+20 y \\ y^{\prime }=40 x-19 y \end {array}\right ] \]

system_of_ODEs

0.340

13513

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+2 y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.296

13514

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.617

13515

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-6 x+4 y \end {array}\right ] \]

system_of_ODEs

0.414

13516

\[ {}\left [\begin {array}{c} x^{\prime }=-11 x-2 y \\ y^{\prime }=13 x-9 y \end {array}\right ] \]

system_of_ODEs

0.435

13517

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-5 y \\ y^{\prime }=10 x-3 y \end {array}\right ] \]

system_of_ODEs

0.411

13518

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.288

13519

\[ {}\left [\begin {array}{c} x^{\prime }=-6 x+2 y \\ y^{\prime }=-2 x-2 y \end {array}\right ] \]

system_of_ODEs

0.305

13520

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-y \\ y^{\prime }=x-5 y \end {array}\right ] \]

system_of_ODEs

0.295

13521

\[ {}\left [\begin {array}{c} x^{\prime }=13 x \\ y^{\prime }=13 y \end {array}\right ] \]

system_of_ODEs

0.217

13522

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-4 y \\ y^{\prime }=x+3 y \end {array}\right ] \]

system_of_ODEs

0.309

13523

\[ {}\left [\begin {array}{c} x^{\prime }=y-x \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.243

13524

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2.261

13525

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.335

13526

\[ {}x y^{\prime } = y+\sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.128

13527

\[ {}x y^{\prime }+y = x^{3} \]

[_linear]

1.300

13528

\[ {}y-x y^{\prime } = x^{2} y y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.825

13529

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.112

13530

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

[_linear]

1.933

13531

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

1.558

13532

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1.326

13533

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.721

13534

\[ {}x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

4.377

13535

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

1.745

13536

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

11.203

13537

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

0.280

13538

\[ {}y = x y^{\prime }+\frac {1}{y} \]

[_separable]

4.437

13539

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

[_quadrature]

0.840

13540

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

5.937

13541

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

[_quadrature]

2.208

13542

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

[_quadrature]

0.632

13543

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.577

13544

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

1.627

13545

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

15.441

13546

\[ {}y^{\prime } = x y^{3}+x^{2} \]
i.c.

[_Abel]

0.838

13547

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

1.068

13548

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.349

13549

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

[_quadrature]

0.655

13550

\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.471

13551

\[ {}y^{\prime } = x -y^{2} \]
i.c.

[[_Riccati, _special]]

17.834

13552

\[ {}y^{\prime } = \left (x -5 y\right )^{{1}/{3}}+2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.924

13553

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.823

13554

\[ {}x^{\prime }+5 x = 10 t +2 \]
i.c.

[[_linear, ‘class A‘]]

1.459

13555

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.136

13556

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.530

13557

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.431

13558

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.365

13559

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

1.793

13560

\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

[[_homogeneous, ‘class G‘]]

10.630

13561

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.694

13562

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \]

[_quadrature]

0.507

13563

\[ {}x^{2}-y+\left (y^{2} x^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

1.196

13564

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.486

13565

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.837

13566

\[ {}y^{\prime } = \frac {x +y-3}{y-x +1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.596

13567

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

1.993

13568

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

[_linear]

2.530

13569

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.379

13570

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

1.145

13571

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.523

13572

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.358

13573

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.502

13574

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.383

13575

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

1.126

13576

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]
i.c.

[[_2nd_order, _missing_x]]

2.359

13577

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.945

13578

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_x]]

0.067

13579

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.921

13580

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

1.602

13581

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.398

13582

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.207

13583

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.151

13584

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.738

13585

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.157

13586

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.133

13587

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

0.570

13588

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

[[_high_order, _missing_x]]

0.115

13589

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

[[_high_order, _with_linear_symmetries]]

0.122

13590

\[ {}y^{\prime \prime }+4 x y = 0 \]

[[_Emden, _Fowler]]

0.467

13591

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.119

13592

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.224

13593

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.263

13594

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.000

13595

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

0.682

13596

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.381

13597

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

[[_2nd_order, _missing_x]]

1.553

13598

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.888

13599

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.504

13600

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.120