2.2.138 Problems 13701 to 13800

Table 2.277: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13701

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.255

13702

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.291

13703

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.289

13704

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.331

13705

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.224

13706

\[ {}y^{\prime \prime \prime \prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.646

13707

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.297

13708

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.260

13709

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.270

13710

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.306

13711

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.330

13712

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.282

13713

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.332

13714

\[ {}y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.277

13715

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.404

13716

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.354

13717

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.368

13718

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.349

13719

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.363

13720

\[ {}y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.493

13721

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.355

13722

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.315

13723

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.516

13724

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.272

13725

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.368

13726

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.563

13727

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.258

13728

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.370

13729

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_linear, ‘class A‘]]

0.317

13730

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.426

13731

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.297

13732

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.417

13733

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

0.278

13734

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.276

13735

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.398

13736

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.719

13737

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

13738

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.670

13739

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.489

13740

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.773

13741

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.308

13742

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (-4+t \right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (-4+t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.611

13743

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.940

13744

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.144

13745

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

0.634

13746

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.770

13747

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.639

13748

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.687

13749

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.357

13750

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.725

13751

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

13752

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.156

13753

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

13754

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

13755

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

13756

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.595

13757

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+4 y^{\prime }+4 y = 8 \]
i.c.

[[_3rd_order, _missing_x]]

0.426

13758

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 4 t \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.348

13759

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 8 \,{\mathrm e}^{2 t}-5 \,{\mathrm e}^{t} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.375

13760

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

1.844

13761

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 12 \operatorname {Heaviside}\left (t \right )-12 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

9.901

13762

\[ {}y^{\prime \prime \prime \prime }-16 y = 32 \operatorname {Heaviside}\left (t \right )-32 \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_high_order, _linear, _nonhomogeneous]]

5.250

13763

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.805

13764

\[ {}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

476.443

13765

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.512

13766

\[ {}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.258

13767

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.532

13768

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

0.957

13769

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

4.653

13770

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

[[_2nd_order, _missing_x]]

1.588

13771

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 5 \]

[[_3rd_order, _missing_x]]

0.099

13772

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.380

13773

\[ {}y^{\prime \prime \prime } = 2 y^{\prime \prime }-4 y^{\prime }+\sin \left (t \right ) \]

[[_3rd_order, _missing_y]]

0.141

13774

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=3 x-4 y \end {array}\right ] \]

system_of_ODEs

0.333

13775

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {5 x}{4}+\frac {3 y}{4} \\ y^{\prime }=\frac {x}{2}-\frac {3 y}{2} \end {array}\right ] \]

system_of_ODEs

0.530

13776

\[ {}\left [\begin {array}{c} x^{\prime }-x+2 y=0 \\ y^{\prime }+y-x=0 \end {array}\right ] \]

system_of_ODEs

0.368

13777

\[ {}\left [\begin {array}{c} x^{\prime }+5 x-2 y=0 \\ 2 x+y^{\prime }-y=0 \end {array}\right ] \]

system_of_ODEs

0.525

13778

\[ {}\left [\begin {array}{c} x^{\prime }-3 x+2 y=0 \\ y^{\prime }-x+3 y=0 \end {array}\right ] \]

system_of_ODEs

0.491

13779

\[ {}\left [\begin {array}{c} x^{\prime }+x-z=0 \\ x+y^{\prime }-y=0 \\ z^{\prime }+x+2 y-3 z=0 \end {array}\right ] \]

system_of_ODEs

0.349

13780

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {x}{2}+2 y-3 z \\ y^{\prime }=y-\frac {z}{2} \\ z^{\prime }=-2 x+z \end {array}\right ] \]

system_of_ODEs

0.889

13781

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }=y \\ x^{\prime }-y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.353

13782

\[ {}\left [\begin {array}{c} x^{\prime }+2 y^{\prime }=t \\ x^{\prime }-y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.459

13783

\[ {}\left [\begin {array}{c} x^{\prime }-y^{\prime }=x+y-t \\ 2 x^{\prime }+3 y^{\prime }=2 x+6 \end {array}\right ] \]

system_of_ODEs

0.490

13784

\[ {}\left [\begin {array}{c} 2 x^{\prime }-y^{\prime }=t \\ 3 x^{\prime }+2 y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.375

13785

\[ {}\left [\begin {array}{c} 5 x^{\prime }-3 y^{\prime }=x+y \\ 3 x^{\prime }-y^{\prime }=t \end {array}\right ] \]

system_of_ODEs

0.469

13786

\[ {}\left [\begin {array}{c} x^{\prime }-4 y^{\prime }=0 \\ 2 x^{\prime }-3 y^{\prime }=y+t \end {array}\right ] \]

system_of_ODEs

0.361

13787

\[ {}\left [\begin {array}{c} 3 x^{\prime }+2 y^{\prime }=\sin \left (t \right ) \\ x^{\prime }-2 y^{\prime }=x+y+t \end {array}\right ] \]

system_of_ODEs

0.631

13788

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x+9 y+12 \,{\mathrm e}^{-t} \\ y^{\prime }=-5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.661

13789

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+6 y+6 \,{\mathrm e}^{-t} \\ y^{\prime }=-12 x+5 y+37 \end {array}\right ] \]

system_of_ODEs

0.743

13790

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+10 y+18 \,{\mathrm e}^{t} \\ y^{\prime }=-10 x+9 y+37 \end {array}\right ] \]

system_of_ODEs

1.002

13791

\[ {}\left [\begin {array}{c} x^{\prime }=-14 x+39 y+78 \sinh \left (t \right ) \\ y^{\prime }=-6 x+16 y+6 \cosh \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.223

13792

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y-2 z-2 \sinh \left (t \right ) \\ y^{\prime }=4 x+2 y-2 z+10 \cosh \left (t \right ) \\ z^{\prime }=-x+3 y+z+5 \end {array}\right ] \]

system_of_ODEs

2.034

13793

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+6 y-2 z+50 \,{\mathrm e}^{t} \\ y^{\prime }=6 x+2 y-2 z+21 \,{\mathrm e}^{-t} \\ z^{\prime }=-x+6 y+z+9 \end {array}\right ] \]

system_of_ODEs

0.918

13794

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-2 y+4 z \\ y^{\prime }=-2 x+y+2 z \\ z^{\prime }=-4 x-2 y+6 z+{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.622

13795

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y+3 z \\ y^{\prime }=x-y+2 z+2 \,{\mathrm e}^{-t} \\ z^{\prime }=-2 x+2 y-2 z \end {array}\right ] \]

system_of_ODEs

0.835

13796

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+y-1-6 \,{\mathrm e}^{t} \\ y^{\prime }=-4 x+3 y+4 \,{\mathrm e}^{t}-3 \end {array}\right ] \]
i.c.

system_of_ODEs

0.617

13797

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y+24 \sin \left (t \right ) \\ y^{\prime }=9 x-3 y+12 \cos \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.922

13798

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-4 y+10 \,{\mathrm e}^{t} \\ y^{\prime }=3 x+14 y+6 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.635

13799

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+4 y+6 \,{\mathrm e}^{3 t} \\ y^{\prime }=-5 x+2 y+6 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.638

13800

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-3 y+z \\ y^{\prime }=2 y+2 z+29 \,{\mathrm e}^{-t} \\ z^{\prime }=5 x+y+z+39 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

25.812