# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+\lambda \sin \left (\lambda x \right )^{3}
\] |
[_Riccati] |
✓ |
8.904 |
|
\[
{}2 y^{\prime } = \left (\lambda +a -a \sin \left (\lambda x \right )\right ) y^{2}+\lambda -a -a \sin \left (\lambda x \right )
\] |
[_Riccati] |
✓ |
75.075 |
|
\[
{}y^{\prime } = \left (\lambda +a \sin \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \sin \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✓ |
35.529 |
|
\[
{}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \sin \left (x \right )^{m} y-a \sin \left (x \right )^{m}
\] |
[_Riccati] |
✓ |
23.368 |
|
\[
{}y^{\prime } = a \sin \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
65.945 |
|
\[
{}x y^{\prime } = a \sin \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \sin \left (\lambda x \right )^{m}
\] |
[_Riccati] |
✓ |
24.529 |
|
\[
{}\left (a \sin \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \sin \left (\mu x \right ) y-d^{2}+c d \sin \left (\mu x \right )
\] |
[_Riccati] |
✗ |
129.015 |
|
\[
{}\left (a \sin \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \sin \left (\lambda x \right ) = 0
\] |
[_Riccati] |
✓ |
6.187 |
|
\[
{}y^{\prime } = \alpha y^{2}+\beta +\gamma \cos \left (\lambda x \right )
\] |
[_Riccati] |
✓ |
3.066 |
|
\[
{}y^{\prime } = y^{2}-a^{2}+a \lambda \cos \left (\lambda x \right )+a^{2} \cos \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✓ |
6.966 |
|
\[
{}y^{\prime } = y^{2}+\lambda ^{2}+c \cos \left (\lambda x +a \right )^{n} \cos \left (\lambda x +b \right )^{-n -4}
\] |
[_Riccati] |
✗ |
164.896 |
|
\[
{}y^{\prime } = y^{2}+a \cos \left (\beta x \right ) y+a b \cos \left (\beta x \right )-b^{2}
\] |
[_Riccati] |
✓ |
4.738 |
|
\[
{}y^{\prime } = y^{2}+a \cos \left (b x \right )^{m} y+a \cos \left (b x \right )^{m}
\] |
[_Riccati] |
✗ |
17.932 |
|
\[
{}y^{\prime } = \lambda \cos \left (\lambda x \right ) y^{2}+\lambda \cos \left (\lambda x \right )^{3}
\] |
[_Riccati] |
✓ |
19.305 |
|
\[
{}2 y^{\prime } = \left (\lambda +a -a \cos \left (\lambda x \right )\right ) y^{2}+\lambda -a -a \cos \left (\lambda x \right )
\] |
[_Riccati] |
✓ |
47.310 |
|
\[
{}y^{\prime } = \left (\lambda +a \cos \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \cos \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✓ |
33.838 |
|
\[
{}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \cos \left (x \right )^{m} y-a \cos \left (x \right )^{m}
\] |
[_Riccati] |
✓ |
19.200 |
|
\[
{}y^{\prime } = a \cos \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
40.479 |
|
\[
{}x y^{\prime } = a \cos \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cos \left (\lambda x \right )^{m}
\] |
[_Riccati] |
✓ |
52.175 |
|
\[
{}\left (a \cos \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cos \left (\mu x \right ) y-d^{2}+c d \cos \left (\mu x \right )
\] |
[_Riccati] |
✗ |
126.967 |
|
\[
{}\left (a \cos \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \cos \left (\lambda x \right ) = 0
\] |
[_Riccati] |
✓ |
5.943 |
|
\[
{}y^{\prime } = y^{2}+a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✓ |
6.471 |
|
\[
{}y^{\prime } = y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✓ |
6.878 |
|
\[
{}y^{\prime } = a y^{2}+b \tan \left (x \right ) y+c
\] |
[_Riccati] |
✓ |
5.879 |
|
\[
{}y^{\prime } = a y^{2}+2 a b \tan \left (x \right ) y+b \left (a b -1\right ) \tan \left (x \right )^{2}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✓ |
11.008 |
|
\[
{}y^{\prime } = y^{2}+a \tan \left (\beta x \right ) y+a b \tan \left (\beta x \right )-b^{2}
\] |
[_Riccati] |
✓ |
5.615 |
|
\[
{}y^{\prime } = y^{2}+a x \tan \left (b x \right )^{m} y+a \tan \left (b x \right )^{m}
\] |
[_Riccati] |
✓ |
6.640 |
|
\[
{}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \tan \left (x \right )^{m} y-a \tan \left (x \right )^{m}
\] |
[_Riccati] |
✓ |
15.312 |
|
\[
{}y^{\prime } = a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{2+n}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda
\] |
[_Riccati] |
✓ |
40.461 |
|
\[
{}y^{\prime } = a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✗ |
175.727 |
|
\[
{}x y^{\prime } = a \tan \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \tan \left (\lambda x \right )^{m}
\] |
[_Riccati] |
✓ |
58.038 |
|
\[
{}\left (a \tan \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+k \tan \left (\mu x \right ) y-d^{2}+k d \tan \left (\mu x \right )
\] |
[_Riccati] |
✗ |
214.495 |
|
\[
{}y^{\prime } = y^{2}+a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✓ |
6.197 |
|
\[
{}y^{\prime } = y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✓ |
6.226 |
|
\[
{}y^{\prime } = y^{2}-2 a b \cot \left (a x \right ) y+b^{2}-a^{2}
\] |
[_Riccati] |
✓ |
8.385 |
|
\[
{}y^{\prime } = y^{2}+a \cot \left (\beta x \right ) y+a b \cot \left (\beta x \right )-b^{2}
\] |
[_Riccati] |
✓ |
6.626 |
|
\[
{}y^{\prime } = y^{2}+a x \cot \left (b x \right )^{m} y+a \cot \left (b x \right )^{m}
\] |
[_Riccati] |
✓ |
7.033 |
|
\[
{}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \cot \left (x \right )^{m} y-a \cot \left (x \right )^{m}
\] |
[_Riccati] |
✓ |
15.511 |
|
\[
{}y^{\prime } = a \cot \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✗ |
201.072 |
|
\[
{}x y^{\prime } = a \cot \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cot \left (\lambda x \right )^{m}
\] |
[_Riccati] |
✓ |
67.478 |
|
\[
{}\left (a \cot \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cot \left (\mu x \right ) y-d^{2}+c d \cot \left (\mu x \right )
\] |
[_Riccati] |
✗ |
240.612 |
|
\[
{}y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x \right )^{n} \cos \left (\lambda x \right )^{-n -4}
\] |
[_Riccati] |
✗ |
31.267 |
|
\[
{}y^{\prime } = a \sin \left (\lambda x \right ) y^{2}+b \sin \left (\lambda x \right ) \cos \left (\lambda x \right )^{n}
\] |
[_Riccati] |
✓ |
13.618 |
|
\[
{}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \cos \left (\lambda x \right )^{n} y-a \cos \left (\lambda x \right )^{n -1}
\] |
[_Riccati] |
✗ |
55.721 |
|
\[
{}y^{\prime } = a \cos \left (\lambda x \right ) y^{2}+b \cos \left (\lambda x \right ) \sin \left (\lambda x \right )^{n}
\] |
[_Riccati] |
✓ |
15.604 |
|
\[
{}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \,x^{n} \cos \left (\lambda x \right ) y-a \,x^{n}
\] |
[_Riccati] |
✓ |
17.170 |
|
\[
{}\sin \left (2 x \right )^{n +1} y^{\prime } = a y^{2} \sin \left (x \right )^{2 n}+b \cos \left (x \right )^{2 n}
\] |
[_Riccati] |
✗ |
380.894 |
|
\[
{}y^{\prime } = y^{2}-y \tan \left (x \right )+a \left (1-a \right ) \cot \left (x \right )^{2}
\] |
[_Riccati] |
✓ |
7.004 |
|
\[
{}y^{\prime } = y^{2}-m y \tan \left (x \right )+b^{2} \cos \left (x \right )^{2 m}
\] |
[_Riccati] |
✓ |
35.551 |
|
\[
{}y^{\prime } = y^{2}+m y \cot \left (x \right )+b^{2} \sin \left (x \right )^{2 m}
\] |
[_Riccati] |
✓ |
35.622 |
|
\[
{}y^{\prime } = y^{2}-2 \lambda ^{2} \tan \left (x \right )^{2}-2 \lambda ^{2} \cot \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✗ |
114.721 |
|
\[
{}y^{\prime } = y^{2}+a \lambda +b \lambda +2 a b +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2}+b \left (\lambda -b \right ) \cot \left (\lambda x \right )^{2}
\] |
[_Riccati] |
✓ |
18.017 |
|
\[
{}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \tan \left (\lambda x \right )^{2}}{4}+a \cos \left (\lambda x \right )^{2} \sin \left (\lambda x \right )^{n}
\] |
[_Riccati] |
✓ |
38.778 |
|
\[
{}y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \sin \left (\lambda x \right ) y-a \tan \left (\lambda x \right )
\] |
[_Riccati] |
✓ |
13.905 |
|
\[
{}y^{\prime } = y^{2}+\lambda \arcsin \left (x \right )^{n} y-a^{2}+a \lambda \arcsin \left (x \right )^{n}
\] |
[_Riccati] |
✓ |
4.063 |
|
\[
{}y^{\prime } = y^{2}+\lambda x \arcsin \left (x \right )^{n} y+\lambda \arcsin \left (x \right )^{n}
\] |
[_Riccati] |
✓ |
7.141 |
|
\[
{}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{k +1} y-1\right )
\] |
[_Riccati] |
✓ |
55.960 |
|
\[
{}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arcsin \left (x \right )^{n}
\] |
[_Riccati] |
✗ |
10.940 |
|
\[
{}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arcsin \left (x \right )^{n} y+b m \,x^{m -1}
\] |
[_Riccati] |
✗ |
32.869 |
|
\[
{}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arcsin \left (x \right )^{n}
\] |
[_Riccati] |
✗ |
46.053 |
|
\[
{}y^{\prime } = \lambda \arcsin \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✗ |
36.481 |
|
\[
{}x y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \left (x \right )^{n}
\] |
[_Riccati] |
✓ |
28.971 |
|
\[
{}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arcsin \left (x \right )^{m}-n y
\] |
[_Riccati] |
✗ |
114.635 |
|
\[
{}y^{\prime } = y^{2}+\lambda \arccos \left (x \right )^{n} y-a^{2}+a \lambda \arccos \left (x \right )^{n}
\] |
[_Riccati] |
✗ |
9.006 |
|
\[
{}y^{\prime } = y^{2}+\lambda x \arccos \left (x \right )^{n} y+\lambda \arccos \left (x \right )^{n}
\] |
[_Riccati] |
✓ |
16.732 |
|
\[
{}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arccos \left (x \right )^{n} \left (x^{k +1} y-1\right )
\] |
[_Riccati] |
✓ |
64.711 |
|
\[
{}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arccos \left (x \right )^{n}
\] |
[_Riccati] |
✗ |
15.878 |
|
\[
{}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arccos \left (x \right )^{n} y+b m \,x^{m -1}
\] |
[_Riccati] |
✗ |
72.799 |
|
\[
{}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arccos \left (x \right )^{n}
\] |
[_Riccati] |
✗ |
51.037 |
|
\[
{}y^{\prime } = \lambda \arccos \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✗ |
42.964 |
|
\[
{}x y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arccos \left (x \right )^{n}
\] |
[_Riccati] |
✓ |
93.248 |
|
\[
{}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arccos \left (x \right )^{m}-n y
\] |
[_Riccati] |
✗ |
157.086 |
|
\[
{}y^{\prime } = y^{2}+\lambda \arctan \left (x \right )^{n} y-a^{2}+a \lambda \arctan \left (x \right )^{n}
\] |
[_Riccati] |
✓ |
5.015 |
|
\[
{}y^{\prime } = y^{2}+\lambda x \arctan \left (x \right )^{n} y+\lambda \arctan \left (x \right )^{n}
\] |
[_Riccati] |
✓ |
6.702 |
|
\[
{}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arctan \left (x \right )^{n} \left (x^{k +1} y-1\right )
\] |
[_Riccati] |
✓ |
39.888 |
|
\[
{}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arctan \left (x \right )^{n}
\] |
[_Riccati] |
✗ |
9.604 |
|
\[
{}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arctan \left (x \right )^{n} y+b m \,x^{m -1}
\] |
[_Riccati] |
✗ |
53.950 |
|
\[
{}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arctan \left (x \right )^{n}
\] |
[_Riccati] |
✗ |
78.468 |
|
\[
{}y^{\prime } = \lambda \arctan \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✗ |
95.970 |
|
\[
{}x y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arctan \left (x \right )^{n}
\] |
[_Riccati] |
✓ |
36.209 |
|
\[
{}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arctan \left (x \right )^{m}-n y
\] |
[_Riccati] |
✗ |
124.711 |
|
\[
{}y^{\prime } = y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} y-a^{2}+a \lambda \operatorname {arccot}\left (x \right )^{n}
\] |
[_Riccati] |
✓ |
5.320 |
|
\[
{}y^{\prime } = y^{2}+\lambda x \operatorname {arccot}\left (x \right )^{n} y+\lambda \operatorname {arccot}\left (x \right )^{n}
\] |
[_Riccati] |
✓ |
10.922 |
|
\[
{}y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} \left (x^{k +1} y-1\right )
\] |
[_Riccati] |
✓ |
43.375 |
|
\[
{}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \operatorname {arccot}\left (x \right )^{n}
\] |
[_Riccati] |
✗ |
12.811 |
|
\[
{}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}-b \lambda \,x^{m} \operatorname {arccot}\left (x \right )^{n} y+b m \,x^{m -1}
\] |
[_Riccati] |
✗ |
102.496 |
|
\[
{}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \operatorname {arccot}\left (x \right )^{n}
\] |
[_Riccati] |
✗ |
78.188 |
|
\[
{}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1}
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati] |
✗ |
115.681 |
|
\[
{}x y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \operatorname {arccot}\left (x \right )^{n}
\] |
[_Riccati] |
✓ |
36.863 |
|
\[
{}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \operatorname {arccot}\left (x \right )^{m}-n y
\] |
[_Riccati] |
✗ |
286.000 |
|
\[
{}y^{\prime } = y^{2}+f \left (x \right ) y-a^{2}-a f \left (x \right )
\] |
[_Riccati] |
✓ |
1.743 |
|
\[
{}y^{\prime } = y^{2} f \left (x \right )-a y-a b -b^{2} f \left (x \right )
\] |
[_Riccati] |
✓ |
2.427 |
|
\[
{}y^{\prime } = y^{2}+x f \left (x \right ) y+f \left (x \right )
\] |
[_Riccati] |
✓ |
1.753 |
|
\[
{}y^{\prime } = y^{2} f \left (x \right )-a \,x^{n} f \left (x \right ) y+a n \,x^{n -1}
\] |
[_Riccati] |
✓ |
3.392 |
|
\[
{}y^{\prime } = y^{2} f \left (x \right )+a n \,x^{n -1}-a^{2} x^{2 n} f \left (x \right )
\] |
[_Riccati] |
✗ |
6.403 |
|
\[
{}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right )
\] |
[_Riccati] |
✓ |
3.111 |
|
\[
{}x y^{\prime } = y^{2} f \left (x \right )+n y+a \,x^{2 n} f \left (x \right )
\] |
[_Riccati] |
✓ |
3.334 |
|
\[
{}x y^{\prime } = x^{2 n} f \left (x \right ) y^{2}+\left (a \,x^{n} f \left (x \right )-n \right ) y+b f \left (x \right )
\] |
[_Riccati] |
✗ |
17.440 |
|
\[
{}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y-a^{2} f \left (x \right )-a g \left (x \right )
\] |
[_Riccati] |
✓ |
2.468 |
|
\[
{}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a n \,x^{n -1}-a \,x^{n} g \left (x \right )-a^{2} x^{2 n} f \left (x \right )
\] |
[_Riccati] |
✗ |
149.789 |
|