# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.477 |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.520 |
|
\[
{}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.254 |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.784 |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.400 |
|
\[
{}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.232 |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
2.426 |
|
\[
{}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.739 |
|
\[
{}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.567 |
|
\[
{}y^{\prime \prime }+\left (x^{2} a +b \right ) y^{\prime }+c \left (x^{2} a +b -c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.626 |
|
\[
{}y^{\prime \prime }+\left (x^{2} a +2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.776 |
|
\[
{}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+x^{2} a +b +2 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.394 |
|
\[
{}y^{\prime \prime }+\left (x^{2} a +b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.823 |
|
\[
{}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.823 |
|
\[
{}y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.660 |
|
\[
{}y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.697 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-x^{2} a +b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.728 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 x^{2} a +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.286 |
|
\[
{}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.821 |
|
\[
{}y^{\prime \prime }+a \,x^{n} y^{\prime } = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.031 |
|
\[
{}y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.802 |
|
\[
{}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.263 |
|
\[
{}y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.967 |
|
\[
{}y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{m +n}+b \,x^{2 m}+m \,x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.035 |
|
\[
{}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+a n \,x^{n -1}+c \,x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.220 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}+b -c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.616 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.798 |
|
\[
{}y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.902 |
|
\[
{}y^{\prime \prime }+\left (a b \,x^{n}+2 b \,x^{n -1}-a^{2} x \right ) y^{\prime }+a \left (a b \,x^{n}+b \,x^{n -1}-a^{2} x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.360 |
|
\[
{}y^{\prime \prime }+x^{n} \left (x^{2} a +\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.197 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }-\left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.720 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.246 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a \left (n +1\right ) x^{n -1}+b \left (m +1\right ) x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.442 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.872 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (a b \,x^{m +n}+b \left (m +1\right ) x^{m -1}-a \,x^{n -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.005 |
|
\[
{}y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a b \,x^{m +n}+b c \,x^{m}+a n \,x^{n -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.944 |
|
\[
{}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.381 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.976 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.165 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.854 |
|
\[
{}x y^{\prime \prime }+n y^{\prime }+b \,x^{1-2 n} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.848 |
|
\[
{}x y^{\prime \prime }+\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y = 0
\] |
[[_Emden, _Fowler]] |
✗ |
0.497 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.193 |
|
\[
{}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} \left (-x^{n +1} b +a +n \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.689 |
|
\[
{}x y^{\prime \prime }+a x y^{\prime }+a y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.393 |
|
\[
{}x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0
\] |
[_Laguerre] |
✗ |
0.872 |
|
\[
{}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.306 |
|
\[
{}x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.261 |
|
\[
{}x y^{\prime \prime }+\left (x \left (a +b \right )+n +m \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.477 |
|
\[
{}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.899 |
|
\[
{}x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.491 |
|
\[
{}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.513 |
|
\[
{}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c x \left (-c \,x^{2}+a x +b +1\right ) = 0
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.227 |
|
\[
{}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.704 |
|
\[
{}x y^{\prime \prime }+\left (a b \,x^{2}+b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.501 |
|
\[
{}x y^{\prime \prime }+\left (x^{2} a +b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.838 |
|
\[
{}x y^{\prime \prime }+\left (x^{2} a +b x +2\right ) y^{\prime }+b y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.851 |
|
\[
{}x y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
2.030 |
|
\[
{}x y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (c -1\right ) \left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.523 |
|
\[
{}x y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.057 |
|
\[
{}x y^{\prime \prime }+\left (x^{2} a +b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.918 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{3}+b \right ) y^{\prime }+a \left (b -1\right ) x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.688 |
|
\[
{}x y^{\prime \prime }+x \left (x^{2} a +b \right ) y^{\prime }+\left (3 x^{2} a +b \right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.589 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.961 |
|
\[
{}x y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.020 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime }+\left (d -1\right ) \left (x^{2} a +b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.675 |
|
\[
{}x y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}-b^{2} x +2 b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.814 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+2\right ) y^{\prime }+a \,x^{n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.871 |
|
\[
{}x y^{\prime \prime }+\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{2 n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.660 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a n \,x^{n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.000 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (b -1\right ) x^{n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.016 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+a \left (n +b -1\right ) x^{n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.569 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+c \left (a \,x^{n}-c x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.790 |
|
\[
{}x y^{\prime \prime }+\left (a b \,x^{n}+b -3 n +1\right ) y^{\prime }+a^{2} n \left (b -n \right ) x^{2 n -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.787 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{2 n -1}+d \,x^{n -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.874 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{n -2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.108 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b x \right ) y^{\prime }+\left (a b \,x^{n}+a n \,x^{n -1}-b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.648 |
|
\[
{}x y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+a x -1\right ) y^{\prime }+a^{2} b \,x^{n} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.237 |
|
\[
{}x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (c -1\right ) \left (a \,x^{n -1}+b \,x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.606 |
|
\[
{}x y^{\prime \prime }+\left (a b \,x^{m +n}+a n \,x^{n}+b \,x^{m}+1-2 n \right ) y^{\prime }+a^{2} b n \,x^{2 n +m -1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.317 |
|
\[
{}\left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.645 |
|
\[
{}\left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.316 |
|
\[
{}\left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
1.790 |
|
\[
{}\left (a_{2} x +b_{2} \right ) y^{\prime \prime }+\left (a_{1} x +b_{1} \right ) y^{\prime }+\left (a_{0} x +b_{0} \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
6.064 |
|
\[
{}\left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (a n \,x^{n -1}+b m \,x^{m -1}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.524 |
|
\[
{}x^{2} y^{\prime \prime }+a y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.168 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.853 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-n \left (n +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.091 |
|
\[
{}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+n \left (n +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.110 |
|
\[
{}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.657 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.666 |
|
\[
{}x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
5.327 |
|
\[
{}x^{2} y^{\prime \prime }-\left (a^{2} x^{4}+a \left (2 b -1\right ) x^{2}+b \left (b +1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.720 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.020 |
|
\[
{}x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.342 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.302 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.329 |
|
\[
{}x^{2} y^{\prime \prime }+\left (a \,x^{2 n} \left (b \,x^{n}+c \right )^{m}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.410 |
|
\[
{}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
2.036 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\left (n +\frac {1}{2}\right )^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.111 |
|