2.2.121 Problems 12001 to 12100

Table 2.243: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

12001

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}} \]

[_Riccati]

455.068

12002

\[ {}y y^{\prime }-y = A \]

[_quadrature]

1.241

12003

\[ {}y y^{\prime }-y = A x +B \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.441

12004

\[ {}y y^{\prime }-y = -\frac {2 x}{9}+A +\frac {B}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.180

12005

\[ {}y y^{\prime }-y = 2 A \left (\sqrt {x}+4 A +\frac {3 A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.806

12006

\[ {}y y^{\prime }-y = A x +\frac {B}{x}-\frac {B^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.407

12007

\[ {}y y^{\prime }-y = A \,x^{k -1}-k B \,x^{k}+k \,B^{2} x^{2 k -1} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.553

12008

\[ {}y y^{\prime }-y = \frac {A}{x}-\frac {A^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.270

12009

\[ {}y y^{\prime }-y = A +B \,{\mathrm e}^{-\frac {2 x}{A}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.391

12010

\[ {}y y^{\prime }-y = A \left ({\mathrm e}^{\frac {2 x}{A}}-1\right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.353

12011

\[ {}y y^{\prime }-y = -\frac {2 \left (m +1\right )}{\left (3+m \right )^{2}}+A \,x^{m} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.132

12012

\[ {}y y^{\prime }-y = -\frac {2 x}{9}+6 A^{2} \left (1+\frac {2 A}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.291

12013

\[ {}y y^{\prime }-y = \frac {2 m -2}{\left (m -3\right )^{2}}+\frac {2 A \left (m \left (3+m \right ) \sqrt {x}+\left (4 m^{2}+3 m +9\right ) A +\frac {3 m \left (3+m \right ) A^{2}}{\sqrt {x}}\right )}{\left (m -3\right )^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

40.360

12014

\[ {}y y^{\prime }-y = \frac {\left (2 m +1\right ) x}{4 m^{2}}+\frac {A}{x}-\frac {A^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.899

12015

\[ {}y y^{\prime }-y = \frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.370

12016

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {5 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.474

12017

\[ {}y y^{\prime }-y = \frac {A}{x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.656

12018

\[ {}y y^{\prime }-y = -\frac {x}{4}+\frac {A \left (\sqrt {x}+5 A +\frac {3 A^{2}}{\sqrt {x}}\right )}{4} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.684

12019

\[ {}y y^{\prime }-y = \frac {2 a^{2}}{\sqrt {8 a^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

2.276

12020

\[ {}y y^{\prime }-y = 2 x +\frac {A}{x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.996

12021

\[ {}y y^{\prime }-y = -\frac {6 X}{25}+\frac {2 A \left (2 \sqrt {x}+19 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{25} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

26.868

12022

\[ {}y y^{\prime }-y = \frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

5.482

12023

\[ {}y y^{\prime }-y = -\frac {4 x}{25}+\frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.967

12024

\[ {}y y^{\prime }-y = -\frac {9 x}{100}+\frac {A}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

40.179

12025

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {2 A \left (5 \sqrt {x}+34 A +\frac {15 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.218

12026

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {A \left (25 \sqrt {x}+41 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{98} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.052

12027

\[ {}y y^{\prime }-y = -\frac {2 x}{9}+\frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.683

12028

\[ {}y y^{\prime }-y = -\frac {5 x}{36}+\frac {A}{x^{{7}/{5}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

47.165

12029

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {6 A \left (-3 \sqrt {x}+23 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.835

12030

\[ {}y y^{\prime }-y = -\frac {30 x}{121}+\frac {3 A \left (21 \sqrt {x}+35 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{242} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.452

12031

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

39.495

12032

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {4 A \left (-10 \sqrt {x}+27 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.447

12033

\[ {}y y^{\prime }-y = \frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.728

12034

\[ {}y y^{\prime }-y = \frac {A}{x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.686

12035

\[ {}y y^{\prime }-y = A \left (2+n \right ) \left (\sqrt {x}+2 \left (2+n \right ) A +\frac {\left (n +1\right ) \left (3+n \right ) A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18.512

12036

\[ {}y y^{\prime }-y = A \left (2+n \right ) \left (\sqrt {x}+2 \left (2+n \right ) A +\frac {\left (2 n +3\right ) A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18.201

12037

\[ {}y y^{\prime }-y = A \sqrt {x}+2 A^{2}+\frac {B}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

11.721

12038

\[ {}y y^{\prime }-y = 2 A^{2}-A \sqrt {x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.027

12039

\[ {}y y^{\prime }-y = -\frac {x}{4}+\frac {6 A \left (\sqrt {x}+8 A +\frac {5 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.283

12040

\[ {}y y^{\prime }-y = -\frac {6 x}{25}+\frac {6 A \left (2 \sqrt {x}+7 A +\frac {4 A^{2}}{\sqrt {x}}\right )}{25} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.774

12041

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {3 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.810

12042

\[ {}y y^{\prime }-y = \frac {3 x}{8}+\frac {3 \sqrt {b^{2}+x^{2}}}{8}+\frac {3 b^{2}}{16 \sqrt {b^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

5.223

12043

\[ {}y y^{\prime }-y = \frac {9 x}{32}+\frac {15 \sqrt {b^{2}+x^{2}}}{32}+\frac {3 b^{2}}{64 \sqrt {b^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

6.583

12044

\[ {}y y^{\prime }-y = -\frac {3 x}{32}-\frac {3 \sqrt {a^{2}+x^{2}}}{32}+\frac {15 a^{2}}{64 \sqrt {a^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

5.657

12045

\[ {}y y^{\prime }-y = A \,x^{2}-\frac {9}{625 A} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.061

12046

\[ {}y y^{\prime }-y = -\frac {6}{25} x -A \,x^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.919

12047

\[ {}y y^{\prime }-y = \frac {6}{25} x -A \,x^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.901

12048

\[ {}y y^{\prime }-y = 12 x +\frac {A}{x^{{5}/{2}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.463

12049

\[ {}y y^{\prime }-y = \frac {63 x}{4}+\frac {A}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

45.556

12050

\[ {}y y^{\prime }-y = 2 x +2 A \left (10 \sqrt {x}+31 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.883

12051

\[ {}y y^{\prime }-y = 2 x +2 A \left (-10 \sqrt {x}+19 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.666

12052

\[ {}y y^{\prime }-y = -\frac {28 x}{121}+\frac {2 A \left (5 \sqrt {x}+106 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{121} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.944

12053

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {A \left (5 \sqrt {x}+262 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.064

12054

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+A \sqrt {x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.053

12055

\[ {}y y^{\prime }-y = 6 x +\frac {A}{x^{4}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.905

12056

\[ {}y y^{\prime }-y = 20 x +\frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.848

12057

\[ {}y y^{\prime }-y = \frac {15 x}{4}+\frac {A}{x^{7}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.980

12058

\[ {}y y^{\prime }-y = -\frac {10 x}{49}+\frac {2 A \left (4 \sqrt {x}+61 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.411

12059

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {2 A \left (\sqrt {x}+166 A +\frac {55 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.010

12060

\[ {}y y^{\prime }-y = -\frac {4 x}{25}+\frac {A \left (7 \sqrt {x}+49 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{50} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.950

12061

\[ {}y y^{\prime }-y = \frac {15 x}{4}+\frac {6 A}{x^{{1}/{3}}}-\frac {3 A^{2}}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.733

12062

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {A}{x^{{1}/{3}}}+\frac {B}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

16.858

12063

\[ {}y y^{\prime }-y = -\frac {5 x}{36}+\frac {A}{x^{{3}/{5}}}-\frac {B}{x^{{7}/{5}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9.607

12064

\[ {}y y^{\prime }-y = \frac {k}{\sqrt {A \,x^{2}+B x +c}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

3.995

12065

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+3 A \left (\frac {1}{49}+B \right ) \sqrt {x}+3 A^{2} \left (\frac {4}{49}-\frac {5 B}{2}\right )+\frac {15 A^{3} \left (\frac {1}{49}-\frac {5 B}{4}\right )}{4 \sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.351

12066

\[ {}y y^{\prime }-y = -\frac {6 x}{25}+\frac {4 B^{2} \left (\left (2-A \right ) x^{{1}/{3}}-\frac {3 B \left (2 A +1\right )}{2}+\frac {B^{2} \left (1-3 A \right )}{x^{{1}/{3}}}-\frac {A \,B^{3}}{x^{{2}/{3}}}\right )}{75} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.791

12067

\[ {}y y^{\prime }-y = \frac {3 x}{4}-\frac {3 A \,x^{{1}/{3}}}{2}+\frac {3 A^{2}}{4 x^{{1}/{3}}}-\frac {27 A^{4}}{625 x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.480

12068

\[ {}y y^{\prime }-y = -\frac {6 x}{25}+\frac {7 A \,x^{{1}/{3}}}{5}+\frac {31 A^{2}}{3 x^{{1}/{3}}}-\frac {100 A^{4}}{3 x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.276

12069

\[ {}y y^{\prime }-y = -\frac {10 x}{49}+\frac {13 A^{2}}{5 x^{{1}/{5}}}-\frac {7 A^{3}}{20 x^{{4}/{5}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15.621

12070

\[ {}y y^{\prime }-y = -\frac {33 x}{169}+\frac {286 A^{2}}{3 x^{{5}/{11}}}-\frac {770 A^{3}}{9 x^{{13}/{11}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.077

12071

\[ {}y y^{\prime }-y = -\frac {21 x}{100}+\frac {7 A^{2} \left (\frac {123}{x^{{1}/{7}}}+\frac {280 A}{x^{{5}/{7}}}-\frac {400 A^{2}}{x^{{9}/{7}}}\right )}{9} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

39.836

12072

\[ {}y y^{\prime }-y = a x +b \,x^{m} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.583

12073

\[ {}y y^{\prime }-y = -\frac {\left (m +1\right ) x}{\left (2+m \right )^{2}}+A \,x^{2 m +1}+B \,x^{3 m +1} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.594

12074

\[ {}y y^{\prime }-y = a^{2} \lambda \,{\mathrm e}^{2 \lambda x}-a \left (b \lambda +1\right ) {\mathrm e}^{\lambda x}+b \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.660

12075

\[ {}y y^{\prime }-y = a^{2} \lambda \,{\mathrm e}^{2 \lambda x}+a \lambda x \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\lambda x} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.345

12076

\[ {}y y^{\prime }-y = 2 a^{2} \lambda \sin \left (2 \lambda x \right )+2 a \sin \left (\lambda x \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

7.234

12077

\[ {}y y^{\prime }-y = a^{2} f^{\prime }\left (x \right ) f^{\prime \prime }\left (x \right )-\frac {\left (f \left (x \right )+b \right )^{2} f^{\prime \prime }\left (x \right )}{{f^{\prime }\left (x \right )}^{3}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

0.915

12078

\[ {}y y^{\prime } = \left (a x +b \right ) y+1 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.953

12079

\[ {}y y^{\prime } = \frac {y}{\left (a x +b \right )^{2}}+1 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.651

12080

\[ {}y y^{\prime } = \left (a -\frac {1}{a x}\right ) y+1 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.919

12081

\[ {}y y^{\prime } = \frac {y}{\sqrt {a x +b}}+1 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]

11.649

12082

\[ {}y y^{\prime } = \frac {3 y}{\sqrt {a \,x^{{3}/{2}}+8 x}}+1 \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

3.243

12083

\[ {}y y^{\prime } = \left (\frac {a}{x^{{2}/{3}}}-\frac {2}{3 a \,x^{{1}/{3}}}\right ) y+1 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.715

12084

\[ {}y y^{\prime } = a \,{\mathrm e}^{\lambda x} y+1 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.138

12085

\[ {}y y^{\prime } = \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{-\lambda x}\right ) y+1 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.716

12086

\[ {}y y^{\prime } = a y \cosh \left (x \right )+1 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

1.924

12087

\[ {}y y^{\prime } = a y \sinh \left (x \right )+1 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.040

12088

\[ {}y y^{\prime } = a \cos \left (\lambda x \right ) y+1 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.179

12089

\[ {}y y^{\prime } = a \sin \left (\lambda x \right ) y+1 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

2.350

12090

\[ {}y y^{\prime } = \left (a x +3 b \right ) y+c \,x^{3}-a b \,x^{2}-2 b^{2} x \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.765

12091

\[ {}y y^{\prime } = \left (3 a x +b \right ) y-a^{2} x^{3}-a b \,x^{2}+c x \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.182

12092

\[ {}2 y y^{\prime } = \left (7 a x +5 b \right ) y-3 a^{2} x^{3}-2 c \,x^{2}-3 b^{2} x \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.594

12093

\[ {}y y^{\prime } = \left (\left (3-m \right ) x -1\right ) y-\left (m -1\right ) a x \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.243

12094

\[ {}y y^{\prime }+x \left (x^{2} a +b \right ) y+x = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.154

12095

\[ {}y y^{\prime }+a \left (1-\frac {1}{x}\right ) y = a^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.883

12096

\[ {}y y^{\prime }-a \left (1-\frac {b}{x}\right ) y = a^{2} b \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.931

12097

\[ {}y y^{\prime } = x^{n -1} \left (\left (2 n +1\right ) x +a n \right ) y-n \,x^{2 n} \left (x +a \right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.798

12098

\[ {}y y^{\prime } = a \left (-b n +x \right ) x^{n -1} y+c \left (x^{2}-\left (2 n +1\right ) b x +n \left (n +1\right ) b^{2}\right ) x^{2 n -1} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.530

12099

\[ {}y y^{\prime } = \left (a \left (2 n +k \right ) x^{k}+b \right ) x^{n -1} y+\left (-a^{2} n \,x^{2 k}-a b \,x^{k}+c \right ) x^{2 n -1} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

42.371

12100

\[ {}y y^{\prime } = \left (a \left (2 n +k \right ) x^{2 k}+b \left (2 m -k \right )\right ) x^{m -k -1} y-\frac {a^{2} m \,x^{4 k}+c \,x^{2 k}+b^{2} m}{x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

53.830