2.2.104 Problems 10301 to 10400

Table 2.209: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10301

\[ {}y^{\prime } = \frac {x \left (a -1\right ) \left (a +1\right )}{y+F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right ) a^{2}-F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.493

10302

\[ {}y^{\prime } = \frac {y}{x \left (-1+F \left (x y\right ) y\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

232.320

10303

\[ {}y^{\prime } = -\frac {-x^{2}+2 x^{3} y-F \left (\left (x y-1\right ) x \right )}{x^{4}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.508

10304

\[ {}y^{\prime } = \frac {F \left (\frac {\left (y+3\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.214

10305

\[ {}y^{\prime } = \frac {\left (1+y\right ) \left (\left (y-\ln \left (1+y\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \]

[‘y=_G(x,y’)‘]

3.967

10306

\[ {}y^{\prime } = \frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \]

[‘x=_G(y,y’)‘]

2.777

10307

\[ {}y^{\prime } = \frac {y^{2}+2 x y+x^{2}+{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}}{y^{2}+2 x y+x^{2}-{\mathrm e}^{2 F \left (-\left (x -y\right ) \left (x +y\right )\right )}} \]

[[_1st_order, _with_linear_symmetries]]

2.514

10308

\[ {}y^{\prime } = \frac {1}{y+\sqrt {x}} \]

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2.537

10309

\[ {}y^{\prime } = \frac {1}{y+2+\sqrt {3 x +1}} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

5.191

10310

\[ {}y^{\prime } = \frac {x^{2}}{y+x^{{3}/{2}}} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5.468

10311

\[ {}y^{\prime } = \frac {x^{{5}/{3}}}{y+x^{{4}/{3}}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

4.710

10312

\[ {}y^{\prime } = \frac {i x^{2} \left (i-2 \sqrt {-x^{3}+6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

36.171

10313

\[ {}y^{\prime } = \frac {x}{y+\sqrt {x^{2}+1}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

4.415

10314

\[ {}y^{\prime } = \frac {\left (-1+y \ln \left (x \right )\right )^{2}}{x} \]

[_Riccati]

2.446

10315

\[ {}y^{\prime } = \frac {x \left (-2+3 \sqrt {x^{2}+3 y}\right )}{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.028

10316

\[ {}y^{\prime } = \frac {\left (-1+2 y \ln \left (x \right )\right )^{2}}{x} \]

[_Riccati]

2.769

10317

\[ {}y^{\prime } = \frac {{\mathrm e}^{b x}}{y \,{\mathrm e}^{-b x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

3.391

10318

\[ {}y^{\prime } = \frac {x^{2} \left (1+2 \sqrt {x^{3}-6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.608

10319

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}}{y \,{\mathrm e}^{-x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

3.342

10320

\[ {}y^{\prime } = \frac {{\mathrm e}^{\frac {2 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

3.067

10321

\[ {}y^{\prime } = \frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

36.740

10322

\[ {}y^{\prime } = \frac {x \left (x +2 \sqrt {x^{3}-6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.711

10323

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x^{2}\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.483

10324

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x^{2}} x}{y \,{\mathrm e}^{x^{2}}+1} \]

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.764

10325

\[ {}y^{\prime } = -\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right ) y \]

[‘x=_G(y,y’)‘]

2.968

10326

\[ {}y^{\prime } = \left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right )^{2} y \]

[‘y=_G(x,y’)‘]

3.476

10327

\[ {}y^{\prime } = \frac {y}{\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )+1} \]

[‘y=_G(x,y’)‘]

3.609

10328

\[ {}y^{\prime } = \frac {1+2 \sqrt {4 x^{2} y+1}\, x^{4}}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

36.699

10329

\[ {}y^{\prime } = \frac {\left (-y^{2}+4 a x \right )^{2}}{y} \]

[_rational]

2.860

10330

\[ {}y^{\prime } = \frac {x \left (-2+3 x \sqrt {x^{2}+3 y}\right )}{3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.030

10331

\[ {}y^{\prime } = -\frac {x^{2} \left (a x -2 \sqrt {a \left (a \,x^{4}+8 y\right )}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

5.619

10332

\[ {}y^{\prime } = \left (-\ln \left (y\right )+x \right ) y \]

[[_1st_order, _with_linear_symmetries]]

1.056

10333

\[ {}y^{\prime } = \frac {x^{3}+x^{2}+2 \sqrt {x^{3}-6 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.084

10334

\[ {}y^{\prime } = \frac {\left (y^{2} a +b \,x^{2}\right )^{2} x}{a^{{5}/{2}} y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.073

10335

\[ {}y^{\prime } = -\frac {x^{3} \left (\sqrt {a}\, x +\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

5.883

10336

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.411

10337

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.212

10338

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{2}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.536

10339

\[ {}y^{\prime } = \frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \]

[‘y=_G(x,y’)‘]

37.254

10340

\[ {}y^{\prime } = -\frac {x}{2}+1+x \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.374

10341

\[ {}y^{\prime } = -\frac {2 x^{2}+2 x -3 \sqrt {x^{2}+3 y}}{3 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.592

10342

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-\frac {4 x}{3}}}{y \,{\mathrm e}^{-\frac {2 x}{3}}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

2.530

10343

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x^{3}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.488

10344

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+x^{2} \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.389

10345

\[ {}y^{\prime } = -\frac {x^{2}-1-4 \sqrt {x^{2}-2 x +1+8 y}}{4 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.432

10346

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.262

10347

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.162

10348

\[ {}y^{\prime } = -\frac {a x}{2}-\frac {b}{2}+x^{2} \sqrt {a^{2} x^{2}+2 a b x +b^{2}+4 a y-4 c} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.328

10349

\[ {}y^{\prime } = \frac {x}{2}+\frac {1}{2}+x^{2} \sqrt {x^{2}+2 x +1-4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.184

10350

\[ {}y^{\prime } = \frac {2 a +x^{2} \sqrt {-y^{2}+4 a x}}{y} \]

[‘y=_G(x,y’)‘]

35.528

10351

\[ {}y^{\prime } = -\frac {x}{2}+1+x^{2} \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.434

10352

\[ {}y^{\prime } = -\frac {\left (\sqrt {a}\, x^{4}+\sqrt {a}\, x^{3}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

37.449

10353

\[ {}y^{\prime } = \left (-\ln \left (y\right )+1+x^{2}+x^{3}\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.493

10354

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 b x}}{y \,{\mathrm e}^{-b x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

1.746

10355

\[ {}y^{\prime } = \frac {y^{3} {\mathrm e}^{-2 x}}{y \,{\mathrm e}^{-x}+1} \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

2.549

10356

\[ {}y^{\prime } = \frac {\left (-2 y^{{3}/{2}}+3 \,{\mathrm e}^{x}\right )^{2} {\mathrm e}^{x}}{4 \sqrt {y}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.018

10357

\[ {}y^{\prime } = \frac {i x \left (i-2 \sqrt {-x^{2}+4 \ln \left (a \right )+4 \ln \left (y\right )}\right ) y}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.522

10358

\[ {}y^{\prime } = \frac {\left (x y^{2}+1\right )^{2}}{y x^{4}} \]

[_rational]

2.663

10359

\[ {}y^{\prime } = \frac {x^{2} \left (3 x +\sqrt {-9 x^{4}+4 y^{3}}\right )}{y^{2}} \]

[‘y=_G(x,y’)‘]

45.205

10360

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{2}+x^{2}}{2 x} \]

[‘y=_G(x,y’)‘]

2.314

10361

\[ {}y^{\prime } = -\frac {x^{2}-x -2-2 \sqrt {x^{2}-4 x +4 y}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.561

10362

\[ {}y^{\prime } = \frac {y+x^{3} a \,{\mathrm e}^{x}+a \,x^{4}+a \,x^{3}-x y^{2} {\mathrm e}^{x}-y^{2} x^{2}-x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.553

10363

\[ {}y^{\prime } = \frac {x +1+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3} \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.581

10364

\[ {}y^{\prime } = \frac {y+x^{3} a \ln \left (x +1\right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (x +1\right )-y^{2} x^{2}-x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.826

10365

\[ {}y^{\prime } = \frac {x^{2} \left (x +1+2 x \sqrt {x^{3}-6 y}\right )}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

5.085

10366

\[ {}y^{\prime } = \frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 y^{2} x^{2}+7 x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

5.296

10367

\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.437

10368

\[ {}y^{\prime } = \frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+x^{4} b +b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+x^{2} a y^{2}+a x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

5.579

10369

\[ {}y^{\prime } = \frac {2 a}{x \left (-x y+2 a x y^{2}-8 a^{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.258

10370

\[ {}y^{\prime } = \frac {y \left (-1+\ln \left (x \left (x +1\right )\right ) y x^{4}-\ln \left (x \left (x +1\right )\right ) x^{3}\right )}{x} \]

[_Bernoulli]

5.179

10371

\[ {}y^{\prime } = \frac {y+\sqrt {y^{2}+x^{2}}\, x^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

8.983

10372

\[ {}y^{\prime } = \frac {y+\ln \left (\left (x -1\right ) \left (x +1\right )\right ) x^{3}+7 \ln \left (\left (x -1\right ) \left (x +1\right )\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.898

10373

\[ {}y^{\prime } = \frac {y^{3} x \,{\mathrm e}^{2 x^{2}}}{y \,{\mathrm e}^{x^{2}}+1} \]

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.013

10374

\[ {}y^{\prime } = \frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

3.150

10375

\[ {}y^{\prime } = \frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

3.253

10376

\[ {}y^{\prime } = \frac {x y-y-{\mathrm e}^{x +1} x^{3}+{\mathrm e}^{x +1} x y^{2}}{\left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.520

10377

\[ {}y^{\prime } = \frac {-x^{2}+1+4 x^{3} \sqrt {x^{2}-2 x +1+8 y}}{4 x +4} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

5.997

10378

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right )+\cos \left (2 y\right ) x^{3}+x^{3}}{2 x} \]

[‘y=_G(x,y’)‘]

2.504

10379

\[ {}y^{\prime } = \frac {y+x^{3} \sqrt {y^{2}+x^{2}}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.072

10380

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 b x}+y^{3} {\mathrm e}^{-3 b x}\right ) {\mathrm e}^{b x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

1.616

10381

\[ {}y^{\prime } = \frac {x +1+2 \sqrt {4 x^{2} y+1}\, x^{3}}{2 x^{3} \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.288

10382

\[ {}y^{\prime } = \frac {y \ln \left (x -1\right )+x^{4}+x^{3}+y^{2} x^{2}+x y^{2}}{\ln \left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.724

10383

\[ {}y^{\prime } = \frac {y \ln \left (x -1\right )+{\mathrm e}^{x +1} x^{3}+7 \,{\mathrm e}^{x +1} x y^{2}}{\ln \left (x -1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

3.714

10384

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-\frac {4 x}{3}}+y^{3} {\mathrm e}^{-2 x}\right ) {\mathrm e}^{\frac {2 x}{3}} \]

[[_1st_order, _with_linear_symmetries], _Abel]

2.192

10385

\[ {}y^{\prime } = \left (1+y^{2} {\mathrm e}^{-2 x}+y^{3} {\mathrm e}^{-3 x}\right ) {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Abel]

1.661

10386

\[ {}y^{\prime } = \frac {x \left (-2 x -2+3 x^{2} \sqrt {x^{2}+3 y}\right )}{3 x +3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

5.233

10387

\[ {}y^{\prime } = \frac {1}{x \left (x y^{2}+1+x \right ) y} \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.795

10388

\[ {}y^{\prime } = \frac {2 x \,{\mathrm e}^{x}-2 x -\ln \left (x \right )-1+x^{4} \ln \left (x \right )+x^{4}-2 y x^{2} \ln \left (x \right )-2 x^{2} y+y^{2} \ln \left (x \right )+y^{2}}{{\mathrm e}^{x}-1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

17.802

10389

\[ {}y^{\prime } = \frac {-y \,{\mathrm e}^{x}+x y-x^{3} \ln \left (x \right )-x^{3}-x y^{2} \ln \left (x \right )-x y^{2}}{\left (-{\mathrm e}^{x}+x \right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

3.354

10390

\[ {}y^{\prime } = \frac {y \left (1-x +y x^{2} \ln \left (x \right )+x^{3} y-x \ln \left (x \right )-x^{2}\right )}{\left (x -1\right ) x} \]

[_Bernoulli]

3.230

10391

\[ {}y^{\prime } = \frac {y \ln \left (x \right ) x -y+2 x^{5} b +2 x^{3} a y^{2}}{\left (x \ln \left (x \right )-1\right ) x} \]

[[_homogeneous, ‘class D‘], _Riccati]

3.109

10392

\[ {}y^{\prime } = \frac {\left (\ln \left (y\right )+x +x^{3}+x^{4}\right ) y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.949

10393

\[ {}y^{\prime } = -\frac {\left (-\ln \left (y-1\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right ) x \left (1+y\right )^{2}}{8} \]

[‘y=_G(x,y’)‘]

20.075

10394

\[ {}y^{\prime } = \frac {\left (-\ln \left (y-1\right )+\ln \left (1+y\right )+2 \ln \left (x \right )\right )^{2} x \left (1+y\right )^{2}}{16} \]

[‘y=_G(x,y’)‘]

44.592

10395

\[ {}y^{\prime } = \frac {\left (-y^{2}+4 a x \right )^{3}}{\left (-y^{2}+4 a x -1\right ) y} \]

[_rational]

2.840

10396

\[ {}y^{\prime } = \frac {2 a x +2 a +x^{3} \sqrt {-y^{2}+4 a x}}{\left (x +1\right ) y} \]

[‘y=_G(x,y’)‘]

43.694

10397

\[ {}y^{\prime } = \frac {-\ln \left (x \right )+{\mathrm e}^{\frac {1}{x}}+4 x^{2} y+2 x +2 x y^{2}+2 x^{3}}{\ln \left (x \right )-{\mathrm e}^{\frac {1}{x}}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

211.440

10398

\[ {}y^{\prime } = -\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.881

10399

\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 x^{3} \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

6.314

10400

\[ {}y^{\prime } = \frac {-b y a +b^{2}+a b +b^{2} x -b a \sqrt {x}-a^{2}}{a \left (-a y+b +a +b x -a \sqrt {x}\right )} \]

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.366