2.2.103 Problems 10201 to 10300

Table 2.207: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10201

\[ {}{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0 \]

[_quadrature]

7.217

10202

\[ {}f \left (y^{2}+x^{2}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

11.793

10203

\[ {}\left (y^{2}+x^{2}\right ) f \left (\frac {x}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

4.652

10204

\[ {}\left (y^{2}+x^{2}\right ) f \left (\frac {y}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

4.597

10205

\[ {}{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[_quadrature]

1.132

10206

\[ {}{y^{\prime }}^{3}-f \left (x \right ) \left (y^{2} a +b y+c \right )^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.797

10207

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

0.759

10208

\[ {}{y^{\prime }}^{3}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.509

10209

\[ {}{y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.560

10210

\[ {}{y^{\prime }}^{3}-a x y^{\prime }+x^{3} = 0 \]

[_quadrature]

0.644

10211

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

1.891

10212

\[ {}{y^{\prime }}^{2}-a x y y^{\prime }+2 y^{2} a = 0 \]

[_separable]

0.769

10213

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

2.175

10214

\[ {}{y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

10.570

10215

\[ {}{y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.006

10216

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

[_dAlembert]

2.957

10217

\[ {}{y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

2.377

10218

\[ {}{y^{\prime }}^{2}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[‘y=_G(x,y’)‘]

38.651

10219

\[ {}a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0 \]

[_quadrature]

11.899

10220

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.754

10221

\[ {}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+3 y-x = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.971

10222

\[ {}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.951

10223

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x = 0 \]

[_quadrature]

0.602

10224

\[ {}x^{3} {y^{\prime }}^{3}-3 x^{2} y {y^{\prime }}^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

11.024

10225

\[ {}2 \left (x y^{\prime }+y\right )^{3}-y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

12.170

10226

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

1.460

10227

\[ {}2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 x y^{\prime }-x = 0 \]

[_quadrature]

2.933

10228

\[ {}y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries]]

108.102

10229

\[ {}16 y^{2} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries]]

107.875

10230

\[ {}x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

[‘y=_G(x,y’)‘]

240.425

10231

\[ {}x^{7} y^{2} {y^{\prime }}^{3}-\left (3 x^{6} y^{3}-1\right ) {y^{\prime }}^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5} = 0 \]

[[_homogeneous, ‘class G‘]]

115.912

10232

\[ {}{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[_quadrature]

1.016

10233

\[ {}{y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0 \]

unknown

35.375

10234

\[ {}{y^{\prime }}^{4}-4 y \left (x y^{\prime }-2 y\right )^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

0.734

10235

\[ {}{y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

[_quadrature]

1.520

10236

\[ {}x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2} = 0 \]

[_quadrature]

2.112

10237

\[ {}{y^{\prime }}^{r}-a y^{s}-b \,x^{\frac {r s}{r -s}} = 0 \]

[[_homogeneous, ‘class G‘]]

7.684

10238

\[ {}{y^{\prime }}^{n}-f \left (x \right )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1} = 0 \]

[_separable]

14.188

10239

\[ {}{y^{\prime }}^{n}-f \left (x \right ) g \left (y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.411

10240

\[ {}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0 \]

[_quadrature]

1.790

10241

\[ {}x^{n -1} {y^{\prime }}^{n}-n x y^{\prime }+y = 0 \]

[‘y=_G(x,y’)‘]

1.808

10242

\[ {}\sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.469

10243

\[ {}\sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y = 0 \]

[_dAlembert]

46.306

10244

\[ {}x \left (\sqrt {1+{y^{\prime }}^{2}}+y^{\prime }\right )-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

35.556

10245

\[ {}a x \sqrt {1+{y^{\prime }}^{2}}+x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

45.781

10246

\[ {}y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

14.077

10247

\[ {}a y \sqrt {1+{y^{\prime }}^{2}}-2 x y y^{\prime }+y^{2}-x^{2} = 0 \]

[_rational]

20.806

10248

\[ {}f \left (y^{2}+x^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries]]

13.212

10249

\[ {}a \left ({y^{\prime }}^{3}+1\right )^{{1}/{3}}+b x y^{\prime }-y = 0 \]

[_dAlembert]

970.635

10250

\[ {}\ln \left (y^{\prime }\right )+x y^{\prime }+a y+b = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3.146

10251

\[ {}\ln \left (y^{\prime }\right )+a \left (-y+x y^{\prime }\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.637

10252

\[ {}y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-x y = 0 \]

[_separable]

3.459

10253

\[ {}\sin \left (y^{\prime }\right )+y^{\prime }-x = 0 \]

[_quadrature]

0.496

10254

\[ {}a \cos \left (y^{\prime }\right )+b y^{\prime }+x = 0 \]

[_quadrature]

0.453

10255

\[ {}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

[_quadrature]

1.477

10256

\[ {}\left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+x y^{\prime }\right )^{2}-1 = 0 \]

[_Clairaut]

7.583

10257

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime } = 0 \]

[_quadrature]

1.110

10258

\[ {}a \,x^{n} f \left (y^{\prime }\right )+x y^{\prime }-y = 0 \]

[‘y=_G(x,y’)‘]

1.040

10259

\[ {}\left (-y+x y^{\prime }\right )^{n} f \left (y^{\prime }\right )+y g \left (y^{\prime }\right )+x h \left (y^{\prime }\right ) = 0 \]

[‘x=_G(y,y’)‘]

4.898

10260

\[ {}f \left (x {y^{\prime }}^{2}\right )+2 x y^{\prime }-y = 0 \]

[‘y=_G(x,y’)‘]

0.427

10261

\[ {}f \left (x -\frac {3 {y^{\prime }}^{2}}{2}\right )+{y^{\prime }}^{3}-y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.848

10262

\[ {}y^{\prime } f \left (x y y^{\prime }-y^{2}\right )-x^{2} y^{\prime }+x y = 0 \]

[NONE]

0.987

10263

\[ {}\phi \left (f \left (x , y, y^{\prime }\right ), g \left (x , y, y^{\prime }\right )\right ) = 0 \]

[NONE]

2.128

10264

\[ {}y^{\prime } = F \left (\frac {y}{x +a}\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.907

10265

\[ {}y^{\prime } = 2 x +F \left (y-x^{2}\right ) \]

[[_1st_order, _with_linear_symmetries]]

0.669

10266

\[ {}y^{\prime } = -\frac {a x}{2}+F \left (y+\frac {x^{2} a}{4}+\frac {b x}{2}\right ) \]

[[_1st_order, _with_linear_symmetries]]

0.969

10267

\[ {}y^{\prime } = F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \]

[[_1st_order, _with_linear_symmetries]]

0.898

10268

\[ {}y^{\prime } = \frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.283

10269

\[ {}y^{\prime } = \frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.415

10270

\[ {}y^{\prime } = -\frac {\left (x^{2} a -2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.457

10271

\[ {}y^{\prime } = \frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \]

[[_1st_order, _with_linear_symmetries]]

1.000

10272

\[ {}y^{\prime } = F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.198

10273

\[ {}y^{\prime } = \frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.521

10274

\[ {}y^{\prime } = \frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.788

10275

\[ {}y^{\prime } = \frac {x +F \left (-\left (x -y\right ) \left (x +y\right )\right )}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.119

10276

\[ {}y^{\prime } = \frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.478

10277

\[ {}y^{\prime } = \frac {x}{-y+F \left (y^{2}+x^{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.348

10278

\[ {}y^{\prime } = \frac {F \left (\frac {y^{2} a +b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.278

10279

\[ {}y^{\prime } = \frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.312

10280

\[ {}y^{\prime } = \frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.845

10281

\[ {}y^{\prime } = \frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.072

10282

\[ {}y^{\prime } = \frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.207

10283

\[ {}y^{\prime } = \frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.416

10284

\[ {}y^{\prime } = \frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.503

10285

\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right )}{x -1} \]

[[_homogeneous, ‘class D‘]]

1.676

10286

\[ {}y^{\prime } = \frac {-x +F \left (y^{2}+x^{2}\right )}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.325

10287

\[ {}y^{\prime } = \frac {F \left (-\frac {-1+2 y \ln \left (x \right )}{y}\right ) y^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.480

10288

\[ {}y^{\prime } = \frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.117

10289

\[ {}y^{\prime } = \frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \]

[NONE]

1.884

10290

\[ {}y^{\prime } = \frac {2 F \left (y+\ln \left (2 x +1\right )\right ) x +F \left (y+\ln \left (2 x +1\right )\right )-2}{2 x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.857

10291

\[ {}y^{\prime } = \frac {2 y^{3}}{1+2 F \left (\frac {4 x y^{2}+1}{y^{2}}\right ) y} \]

[‘x=_G(y,y’)‘]

2.306

10292

\[ {}y^{\prime } = -\frac {y^{2} \left (2 x -F \left (-\frac {x y-2}{2 y}\right )\right )}{4 x} \]

[NONE]

2.204

10293

\[ {}y^{\prime } = -\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

3.083

10294

\[ {}y^{\prime } = \frac {2 y+F \left (\frac {y}{x^{2}}\right ) x^{3}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.114

10295

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \]

[[_1st_order, _with_linear_symmetries]]

1.443

10296

\[ {}y^{\prime } = \frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.220

10297

\[ {}y^{\prime } = \frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x} \]

[[_homogeneous, ‘class D‘]]

1.094

10298

\[ {}y^{\prime } = \frac {-2 x -y+F \left (x \left (x +y\right )\right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.375

10299

\[ {}y^{\prime } = \frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2 F \left (y \,{\mathrm e}^{-\frac {x^{2}}{4}}\right )\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.892

10300

\[ {}y^{\prime } = \frac {x +y+F \left (-\frac {-y+x \ln \left (x \right )}{x}\right ) x^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.629