2.2.105 Problems 10401 to 10500

Table 2.211: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10401

\[ {}{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0 \]

[[_1st_order, _with_linear_symmetries]]

4.288

10402

\[ {}2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.545

10403

\[ {}2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 x y = 0 \]

[[_homogeneous, ‘class G‘]]

2.216

10404

\[ {}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.574

10405

\[ {}3 {y^{\prime }}^{2}+4 y^{\prime } x +x^{2}-y = 0 \]

[[_homogeneous, ‘class G‘]]

1.989

10406

\[ {}a {y^{\prime }}^{2}+b y^{\prime }-y = 0 \]

[_quadrature]

0.672

10407

\[ {}a {y^{\prime }}^{2}+b \,x^{2} y^{\prime }+c x y = 0 \]

[[_homogeneous, ‘class G‘]]

3.432

10408

\[ {}a {y^{\prime }}^{2}+y y^{\prime }-x = 0 \]

[_dAlembert]

109.660

10409

\[ {}a {y^{\prime }}^{2}-y y^{\prime }-x = 0 \]

[_dAlembert]

96.954

10410

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.227

10411

\[ {}x {y^{\prime }}^{2}+x -2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.116

10412

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

1.251

10413

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

1.436

10414

\[ {}x {y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.312

10415

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

0.636

10416

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.937

10417

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.673

10418

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

2.425

10419

\[ {}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.194

10420

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.578

10421

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.995

10422

\[ {}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.505

10423

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.637

10424

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.139

10425

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.689

10426

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.010

10427

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.707

10428

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.735

10429

\[ {}\left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.686

10430

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (x +3 y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.724

10431

\[ {}a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.910

10432

\[ {}a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.960

10433

\[ {}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

[_dAlembert]

1.419

10434

\[ {}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0 \]

[_separable]

2.858

10435

\[ {}\left (y^{\prime } x +a \right )^{2}-2 a y+x^{2} = 0 \]

[_rational]

72.477

10436

\[ {}\left (y^{\prime } x +y+2 x \right )^{2}-4 x y-4 x^{2}-4 a = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.863

10437

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

0.634

10438

\[ {}x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x +y \left (1+y\right ) = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.549

10439

\[ {}x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{4}+\left (-x^{2}+1\right ) y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.937

10440

\[ {}x^{2} {y^{\prime }}^{2}-\left (a +2 x y\right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.857

10441

\[ {}x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+2 y^{2} = 0 \]

[_separable]

0.751

10442

\[ {}x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+3 y^{2} = 0 \]

[_separable]

0.534

10443

\[ {}x^{2} {y^{\prime }}^{2}+4 x y^{\prime } y-5 y^{2} = 0 \]

[_separable]

0.773

10444

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 \left (y+2\right ) y = 0 \]

[_separable]

0.666

10445

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

0.657

10446

\[ {}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

76.055

10447

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5.036

10448

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.796

10449

\[ {}{y^{\prime }}^{2} \left (x^{2}-1\right )-1 = 0 \]

[_quadrature]

0.514

10450

\[ {}{y^{\prime }}^{2} \left (x^{2}-1\right )-y^{2}+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.449

10451

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+y^{2} = 0 \]

[_separable]

0.652

10452

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

33.105

10453

\[ {}\left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y^{\prime } y+y^{2}+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.009

10454

\[ {}\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

[_rational]

71.454

10455

\[ {}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y^{\prime } y-y^{2}+a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

138.308

10456

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.325

10457

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘]]

3.103

10458

\[ {}x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12.676

10459

\[ {}x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.956

10460

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.805

10461

\[ {}{\mathrm e}^{-2 x} {y^{\prime }}^{2}-\left (y^{\prime }-1\right )^{2}+{\mathrm e}^{-2 y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

21.022

10462

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0 \]

[‘y=_G(x,y’)‘]

28.288

10463

\[ {}y {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.519

10464

\[ {}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.302

10465

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.936

10466

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.498

10467

\[ {}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.157

10468

\[ {}y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.981

10469

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.381

10470

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.186

10471

\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.957

10472

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

0.333

10473

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.061

10474

\[ {}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.998

10475

\[ {}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.912

10476

\[ {}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.738

10477

\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.071

10478

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.995

10479

\[ {}\left (b +a y\right ) \left (1+{y^{\prime }}^{2}\right )-c = 0 \]

[_quadrature]

0.860

10480

\[ {}\left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0 \]

[_rational, _dAlembert]

539.148

10481

\[ {}\left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0 \]

[_rational]

3.638

10482

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

0.978

10483

\[ {}x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0 \]

[_rational]

38.759

10484

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.802

10485

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}-6 x y^{\prime } y-y^{2}+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

164.600

10486

\[ {}a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0 \]

[_rational]

187.318

10487

\[ {}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0 \]

[_quadrature]

0.690

10488

\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.468

10489

\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

74.439

10490

\[ {}y^{2} {y^{\prime }}^{2}+2 x y^{\prime } y+a y^{2}+b x +c = 0 \]

[_rational]

9.589

10491

\[ {}y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+a -x^{2}+2 y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

84.166

10492

\[ {}y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (a -1\right ) b +a \,x^{2}+\left (1-a \right ) y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

11.050

10493

\[ {}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

0.869

10494

\[ {}\left (y^{2}-2 a x +a^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

[‘y=_G(x,y’)‘]

81.734

10495

\[ {}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+\left (-a^{2}+1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.556

10496

\[ {}\left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

507.420

10497

\[ {}\left (y-x \right )^{2} \left (1+{y^{\prime }}^{2}\right )-a^{2} \left (y^{\prime }+1\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

15.195

10498

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.679

10499

\[ {}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0 \]

[_quadrature]

0.873

10500

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.124