2.2.105 Problems 10401 to 10500

Table 2.211: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10401

\[ {}{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0 \]

[[_1st_order, _with_linear_symmetries]]

4.338

10402

\[ {}2 {y^{\prime }}^{2}+\left (-1+x \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.432

10403

\[ {}2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 x y = 0 \]

[[_homogeneous, ‘class G‘]]

2.174

10404

\[ {}3 {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.423

10405

\[ {}3 {y^{\prime }}^{2}+4 x y^{\prime }-y+x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

1.754

10406

\[ {}a {y^{\prime }}^{2}+b y^{\prime }-y = 0 \]

[_quadrature]

0.510

10407

\[ {}a {y^{\prime }}^{2}+b \,x^{2} y^{\prime }+c x y = 0 \]

[[_homogeneous, ‘class G‘]]

2.996

10408

\[ {}a {y^{\prime }}^{2}+y y^{\prime }-x = 0 \]

[_dAlembert]

73.217

10409

\[ {}a {y^{\prime }}^{2}-y y^{\prime }-x = 0 \]

[_dAlembert]

46.317

10410

\[ {}x {y^{\prime }}^{2}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.414

10411

\[ {}x {y^{\prime }}^{2}-2 y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.867

10412

\[ {}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0 \]

[_rational, _dAlembert]

0.972

10413

\[ {}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0 \]

[_rational, _dAlembert]

1.154

10414

\[ {}x {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.785

10415

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

0.490

10416

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.773

10417

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

3.249

10418

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

2.469

10419

\[ {}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.831

10420

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.432

10421

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.375

10422

\[ {}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.276

10423

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.490

10424

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.950

10425

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.338

10426

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+2 y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.584

10427

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.453

10428

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.617

10429

\[ {}\left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.616

10430

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3 y+x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.654

10431

\[ {}a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.713

10432

\[ {}a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.815

10433

\[ {}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

[_rational, _dAlembert]

1.532

10434

\[ {}x^{2} {y^{\prime }}^{2}-y^{4}+y^{2} = 0 \]

[_separable]

2.746

10435

\[ {}\left (x y^{\prime }+a \right )^{2}-2 a y+x^{2} = 0 \]

[_rational]

70.193

10436

\[ {}\left (x y^{\prime }+y+2 x \right )^{2}-4 x y-4 x^{2}-4 a = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.450

10437

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

0.784

10438

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y \left (y+1\right )-x = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.437

10439

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} \left (-x^{2}+1\right )-x^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.569

10440

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 x y+a \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.713

10441

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

1.049

10442

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+3 y^{2} = 0 \]

[_separable]

0.461

10443

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

0.942

10444

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0 \]

[_separable]

0.474

10445

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

0.805

10446

\[ {}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

70.548

10447

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

7.958

10448

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.634

10449

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.343

10450

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-y^{2}+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.024

10451

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

0.855

10452

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

31.458

10453

\[ {}\left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.726

10454

\[ {}\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

[‘y=_G(x,y’)‘]

70.017

10455

\[ {}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2}+a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

69.131

10456

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.524

10457

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘]]

2.999

10458

\[ {}x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12.290

10459

\[ {}x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.714

10460

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.625

10461

\[ {}{\mathrm e}^{-2 x} {y^{\prime }}^{2}-\left (y^{\prime }-1\right )^{2}+{\mathrm e}^{-2 y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

17.540

10462

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0 \]

[‘y=_G(x,y’)‘]

28.306

10463

\[ {}y {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.364

10464

\[ {}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.171

10465

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.636

10466

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.747

10467

\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.617

10468

\[ {}y {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.578

10469

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.858

10470

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.500

10471

\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.768

10472

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

0.458

10473

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.696

10474

\[ {}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (-1+x \right ) y^{\prime }+y-2 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.763

10475

\[ {}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.769

10476

\[ {}4 y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.493

10477

\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.802

10478

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.858

10479

\[ {}\left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c = 0 \]

[_quadrature]

0.552

10480

\[ {}\left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0 \]

[_rational, _dAlembert]

282.755

10481

\[ {}\left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0 \]

[_rational]

3.678

10482

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

1.369

10483

\[ {}x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0 \]

[_rational]

37.145

10484

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

147.797

10485

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}-6 x y y^{\prime }-y^{2}+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

73.017

10486

\[ {}a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0 \]

[_rational]

56.085

10487

\[ {}y^{2} {y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

0.512

10488

\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.861

10489

\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+y^{2}-4 a x +4 a^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

72.013

10490

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a y^{2}+b x +c = 0 \]

[_rational]

9.119

10491

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2}+a = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

79.845

10492

\[ {}y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (1-a \right ) y^{2}+a \,x^{2}+\left (a -1\right ) b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.167

10493

\[ {}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

0.647

10494

\[ {}\left (y^{2}-2 a x +a^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

[‘y=_G(x,y’)‘]

78.706

10495

\[ {}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+\left (-a^{2}+1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.653

10496

\[ {}\left (y^{2}+\left (1-a \right ) x^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (1-a \right ) y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

310.007

10497

\[ {}\left (y-x \right )^{2} \left (1+{y^{\prime }}^{2}\right )-a^{2} \left (y^{\prime }+1\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

7.282

10498

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.274

10499

\[ {}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0 \]

[_quadrature]

0.615

10500

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

292.509