2.2.102 Problems 10101 to 10200

Table 2.205: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

10101

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-x^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.625

10102

\[ {}x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0 \]

[[_homogeneous, ‘class G‘]]

3.509

10103

\[ {}x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

[[_homogeneous, ‘class G‘]]

16.259

10104

\[ {}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.682

10105

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.438

10106

\[ {}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.836

10107

\[ {}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.638

10108

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.512

10109

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.399

10110

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.529

10111

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+2 y+x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.726

10112

\[ {}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.043

10113

\[ {}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.572

10114

\[ {}\left (3 x +1\right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.562

10115

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3 y+x \right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.613

10116

\[ {}a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.681

10117

\[ {}a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.734

10118

\[ {}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]

[_rational, _dAlembert]

2.105

10119

\[ {}x^{2} {y^{\prime }}^{2}-y^{4}+y^{2} = 0 \]

[_separable]

2.224

10120

\[ {}\left (x y^{\prime }+a \right )^{2}-2 a y+x^{2} = 0 \]

[_rational]

86.158

10121

\[ {}\left (x y^{\prime }+y+2 x \right )^{2}-4 x y-4 x^{2}-4 a = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.301

10122

\[ {}y^{\prime }-1 = 0 \]

[_quadrature]

0.464

10123

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y \left (1+y\right )-x = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.458

10124

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} \left (-x^{2}+1\right )-x^{4} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

9.166

10125

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 x y+a \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.682

10126

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

3.073

10127

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+3 y^{2} = 0 \]

[_separable]

0.410

10128

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

[_separable]

2.727

10129

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0 \]

[_separable]

0.740

10130

\[ {}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0 \]

[_linear]

2.193

10131

\[ {}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

150.385

10132

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

1.040

10133

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.580

10134

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.303

10135

\[ {}\left (x^{2}-1\right ) {y^{\prime }}^{2}-y^{2}+1 = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.016

10136

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0 \]

[_separable]

2.084

10137

\[ {}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

27.272

10138

\[ {}\left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}+b = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.982

10139

\[ {}\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

[_rational]

69.406

10140

\[ {}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2}+a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

73.875

10141

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.248

10142

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0 \]

[[_homogeneous, ‘class G‘]]

5.615

10143

\[ {}x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

11.103

10144

\[ {}x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.932

10145

\[ {}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.569

10146

\[ {}{\mathrm e}^{-2 x} {y^{\prime }}^{2}-\left (y^{\prime }-1\right )^{2}+{\mathrm e}^{-2 y} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

15.749

10147

\[ {}\left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0 \]

[‘y=_G(x,y’)‘]

25.607

10148

\[ {}\operatorname {d0} \left (x \right ) {y^{\prime }}^{2}+2 \operatorname {b0} \left (x \right ) y y^{\prime }+\operatorname {c0} \left (x \right ) y^{2}+2 \operatorname {d0} \left (x \right ) y^{\prime }+2 \operatorname {e0} \left (x \right ) y+\operatorname {f0} \left (x \right ) = 0 \]

[‘y=_G(x,y’)‘]

262.454

10149

\[ {}y {y^{\prime }}^{2}-1 = 0 \]

[_quadrature]

0.677

10150

\[ {}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

1.345

10151

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.075

10152

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-9 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.126

10153

\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.978

10154

\[ {}y {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.592

10155

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.150

10156

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.786

10157

\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.039

10158

\[ {}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0 \]

[_quadrature]

3.297

10159

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.947

10160

\[ {}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.977

10161

\[ {}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.970

10162

\[ {}4 y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.854

10163

\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.152

10164

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.971

10165

\[ {}\left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c = 0 \]

[_quadrature]

0.961

10166

\[ {}\left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0 \]

[_rational, _dAlembert]

419.532

10167

\[ {}\left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0 \]

[_rational]

3.354

10168

\[ {}x y {y^{\prime }}^{2}+\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

4.256

10169

\[ {}x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0 \]

[_rational]

19.291

10170

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+2 x y-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.469

10171

\[ {}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}-6 x y y^{\prime }-y^{2}+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

72.466

10172

\[ {}a x y {y^{\prime }}^{2}-\left (y^{2} a +b \,x^{2}+c \right ) y^{\prime }+b x y = 0 \]

[_rational]

1794.732

10173

\[ {}y^{2} {y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

4.722

10174

\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.204

10175

\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+y^{2}-4 a x +4 a^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

75.586

10176

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} a +b x +c = 0 \]

[_rational]

8.560

10177

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2}+a = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

78.765

10178

\[ {}y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (-a +1\right ) y^{2}+x^{2} a +\left (a -1\right ) b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

9.908

10179

\[ {}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

0.936

10180

\[ {}\left (y^{2}-2 a x +a^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

[‘y=_G(x,y’)‘]

88.875

10181

\[ {}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+\left (-a^{2}+1\right ) x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.964

10182

\[ {}\left (y^{2}+\left (-a +1\right ) x^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (-a +1\right ) y^{2}+x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

317.210

10183

\[ {}\left (y-x \right )^{2} \left (1+{y^{\prime }}^{2}\right )-a^{2} \left (y^{\prime }+1\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

21.971

10184

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.704

10185

\[ {}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0 \]

[_quadrature]

0.625

10186

\[ {}\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.181

10187

\[ {}\left (-b +a \right ) y^{2} {y^{\prime }}^{2}-2 b x y y^{\prime }+y^{2} a -b \,x^{2}-a b = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.973

10188

\[ {}\left (y^{2} a +b x +c \right ) {y^{\prime }}^{2}-b y y^{\prime }+d y^{2} = 0 \]

[‘y=_G(x,y’)‘]

88.784

10189

\[ {}\left (a y-b x \right )^{2} \left (a^{2} {y^{\prime }}^{2}+b^{2}\right )-c^{2} \left (a y^{\prime }+b \right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

31.773

10190

\[ {}\left (\operatorname {b2} y+\operatorname {a2} x +\operatorname {c2} \right )^{2} {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {b0} y+\operatorname {a0} +\operatorname {c0} = 0 \]

[‘y=_G(x,y’)‘]

466.747

10191

\[ {}x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y = 0 \]

[_rational]

14.830

10192

\[ {}x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3} = 0 \]

[_separable]

74.629

10193

\[ {}x^{2} \left (-1+x y^{2}\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (y-x \right ) y^{\prime }-y^{2} \left (x^{2} y-1\right ) = 0 \]

[‘y=_G(x,y’)‘]

28.098

10194

\[ {}\left (y^{4}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+y^{2} \left (y^{2}-a^{2}\right ) = 0 \]

[‘y=_G(x,y’)‘]

25.556

10195

\[ {}\left (y^{4}+y^{2} x^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2} = 0 \]

[‘y=_G(x,y’)‘]

11.970

10196

\[ {}9 y^{4} \left (x^{2}-1\right ) {y^{\prime }}^{2}-6 x y^{5} y^{\prime }-4 x^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14.901

10197

\[ {}x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (y^{2}-x^{2}\right ) y^{\prime }-y^{2} \left (x^{4} y^{2}-1\right ) = 0 \]

[‘y=_G(x,y’)‘]

30.517

10198

\[ {}\left (a^{2} \sqrt {y^{2}+x^{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+a^{2} \sqrt {y^{2}+x^{2}}-y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

150.368

10199

\[ {}\left (a \left (y^{2}+x^{2}\right )^{{3}/{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+a \left (y^{2}+x^{2}\right )^{{3}/{2}}-y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

44.255

10200

\[ {}\sin \left (y\right ) {y^{\prime }}^{2}+2 x y^{\prime } \cos \left (y\right )^{3}-\sin \left (y\right ) \cos \left (y\right )^{4} = 0 \]

[‘y=_G(x,y’)‘]

145.789