2.980 ODE No. 980
\[ y'(x)=\frac {x^3 y(x)^3+6 x^2 y(x)^2+12 x y(x)+2 x+8}{x^3} \]
✓ Mathematica : cpu = 0.0857754 (sec), leaf count = 43
DSolve[Derivative[1][y][x] == (8 + 2*x + 12*x*y[x] + 6*x^2*y[x]^2 + x^3*y[x]^3)/x^3,y[x],x]
\[\left \{\left \{y(x)\to -\frac {2}{x}-\frac {1}{\sqrt {-2 x+c_1}}\right \},\left \{y(x)\to -\frac {2}{x}+\frac {1}{\sqrt {-2 x+c_1}}\right \}\right \}\]
✓ Maple : cpu = 0.02 (sec), leaf count = 35
dsolve(diff(y(x),x) = (x^3*y(x)^3+6*y(x)^2*x^2+12*x*y(x)+8+2*x)/x^3,y(x))
\[y \left (x \right ) = -\frac {1}{\sqrt {c_{1} -2 x}}-\frac {2}{x}\]