2.979 ODE No. 979
\[ y'(x)=\frac {-x^3+3 x^2 y(x)-3 x y(x)^2+y(x)^3+x}{x} \]
✓ Mathematica : cpu = 0.0710178 (sec), leaf count = 37
DSolve[Derivative[1][y][x] == (x - x^3 + 3*x^2*y[x] - 3*x*y[x]^2 + y[x]^3)/x,y[x],x]
\[\left \{\left \{y(x)\to x-\frac {1}{\sqrt {-2 \log (x)+c_1}}\right \},\left \{y(x)\to x+\frac {1}{\sqrt {-2 \log (x)+c_1}}\right \}\right \}\]
✓ Maple : cpu = 0.067 (sec), leaf count = 49
dsolve(diff(y(x),x) = (y(x)^3-3*x*y(x)^2+3*x^2*y(x)-x^3+x)/x,y(x))
\[y \left (x \right ) = \frac {\sqrt {c_{1} -2 \ln \left (x \right )}\, x -1}{\sqrt {c_{1} -2 \ln \left (x \right )}}\]