2.981 ODE No. 981
\[ y'(x)=\frac {a^3 x^3 y(x)^3+3 a^2 x^2 y(x)^2+a^2 x+3 a x y(x)+1}{a^3 x^3} \]
✓ Mathematica : cpu = 0.132417 (sec), leaf count = 49
DSolve[Derivative[1][y][x] == (1 + a^2*x + 3*a*x*y[x] + 3*a^2*x^2*y[x]^2 + a^3*x^3*y[x]^3)/(a^3*x^3),y[x],x]
\[\left \{\left \{y(x)\to -\frac {1}{a x}-\frac {1}{\sqrt {-2 x+c_1}}\right \},\left \{y(x)\to -\frac {1}{a x}+\frac {1}{\sqrt {-2 x+c_1}}\right \}\right \}\]
✓ Maple : cpu = 0.026 (sec), leaf count = 41
dsolve(diff(y(x),x) = (y(x)^3*a^3*x^3+3*y(x)^2*a^2*x^2+3*a*x*y(x)+1+a^2*x)/x^3/a^3,y(x))
\[y \left (x \right ) = -\frac {1}{\sqrt {c_{1} -2 x}}-\frac {1}{x a}\]