2.887 ODE No. 887
\[ y'(x)=\frac {a^3 x^3 y(x)^3+3 a^2 x^2 y(x)^2+a^2 x y(x)+a^2 x+3 a x y(x)+a+1}{a^2 x^2 (a x y(x)+a x+1)} \]
✓ Mathematica : cpu = 0.189928 (sec), leaf count = 106
DSolve[Derivative[1][y][x] == (1 + a + a^2*x + 3*a*x*y[x] + a^2*x*y[x] + 3*a^2*x^2*y[x]^2 + a^3*x^3*y[x]^3)/(a^2*x^2*(1 + a*x + a*x*y[x])),y[x],x]
\[\left \{\left \{y(x)\to -\frac {a x+1}{a x}+\frac {1}{a^3 x^3 \left (\frac {1}{a^3 x^3}-\frac {1}{x^3 \sqrt {-2 a^6 x+c_1}}\right )}\right \},\left \{y(x)\to -\frac {a x+1}{a x}+\frac {1}{a^3 x^3 \left (\frac {1}{a^3 x^3}+\frac {1}{x^3 \sqrt {-2 a^6 x+c_1}}\right )}\right \}\right \}\]
✓ Maple : cpu = 0.068 (sec), leaf count = 72
dsolve(diff(y(x),x) = 1/a^2/x^2*(y(x)*a^2*x+a+a^2*x+y(x)^3*a^3*x^3+3*y(x)^2*a^2*x^2+3*a*x*y(x)+1)/(a*x*y(x)+1+a*x),y(x))
\[y \left (x \right ) = \frac {a x -\sqrt {c_{1} -2 x}+1}{\left (\sqrt {c_{1} -2 x}-1\right ) x a}\]