2.886   ODE No. 886

\[ y'(x)=\frac {x^6 y(x)^3-3 x^5 y(x)^2+x^4 y(x)^2+3 x^4 y(x)-4 x^3 y(x)-x^3+2 x^2+1}{x^4} \]

Mathematica : cpu = 0.153373 (sec), leaf count = 82

DSolve[Derivative[1][y][x] == (1 + 2*x^2 - x^3 - 4*x^3*y[x] + 3*x^4*y[x] + x^4*y[x]^2 - 3*x^5*y[x]^2 + x^6*y[x]^3)/x^4,y[x],x]
 
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {3 x^2 y(x)-3 x+1}{\sqrt [3]{29}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=-\frac {29^{2/3}}{9 x}+c_1,y(x)\right ]\]

Maple : cpu = 0.059 (sec), leaf count = 42

dsolve(diff(y(x),x) = 1/x^4*(2*x^2-4*x^3*y(x)+1+y(x)^2*x^4+x^6*y(x)^3-3*y(x)^2*x^5+3*y(x)*x^4-x^3),y(x))
 
\[y \left (x \right ) = \frac {9 x -3+29 \operatorname {RootOf}\left (-81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right ) x +3 x c_{1} -1\right )}{9 x^{2}}\]