2.888 ODE No. 888
\[ y'(x)=\frac {x^4 y(x)^3-5 x^3 y(x)^2+6 x^2 y(x)-2 x y(x)-2 x+1}{x^2 \left (x^2 y(x)-x+1\right )} \]
✓ Mathematica : cpu = 0.134408 (sec), leaf count = 78
DSolve[Derivative[1][y][x] == (1 - 2*x - 2*x*y[x] + 6*x^2*y[x] - 5*x^3*y[x]^2 + x^4*y[x]^3)/(x^2*(1 - x + x^2*y[x])),y[x],x]
\[\left \{\left \{y(x)\to \frac {x-1}{x^2}+\frac {1}{x^4 \left (\frac {1}{x^2}-\frac {1}{x^2 \sqrt {\frac {2}{x}+c_1}}\right )}\right \},\left \{y(x)\to \frac {x-1}{x^2}+\frac {1}{x^4 \left (\frac {1}{x^2}+\frac {1}{x^2 \sqrt {\frac {2}{x}+c_1}}\right )}\right \}\right \}\]
✓ Maple : cpu = 0.085 (sec), leaf count = 79
dsolve(diff(y(x),x) = 1/x^2*(6*x^2*y(x)-2*x+1-5*x^3*y(x)^2-2*x*y(x)+y(x)^3*x^4)/(x^2*y(x)-x+1),y(x))
\[y \left (x \right ) = \frac {\sqrt {\frac {c_{1} x +2}{x}}\, x -x +1}{\left (\sqrt {\frac {c_{1} x +2}{x}}-1\right ) x^{2}}\]