2.1627 ODE No. 1627
\[ f(x) \left (y'(x)+y(x)^2\right )-g(x)+y''(x)+2 y(x) y'(x)=0 \]
✗ Mathematica : cpu = 0.173789 (sec), leaf count = 0
DSolve[-g[x] + 2*y[x]*Derivative[1][y][x] + f[x]*(y[x]^2 + Derivative[1][y][x]) + Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[-g[x] + 2*y[x]*Derivative[1][y][x] + f[x]*(y[x]^2 + Derivative[1][y][x]) + Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(diff(diff(y(x),x),x)+2*y(x)*diff(y(x),x)+f(x)*(diff(y(x),x)+y(x)^2)-g(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \textit {\_}b\left (\textit {\_a} \right )\:\& \text {where}\:\left [\left \{\textit {\_}b\left (\textit {\_a} \right )^{2} {\mathrm e}^{\int f \left (\textit {\_a} \right )d \textit {\_a}}+{\mathrm e}^{\int f \left (\textit {\_a} \right )d \textit {\_a}} \left (\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )\right )-\left (\int {\mathrm e}^{\int f \left (\textit {\_a} \right )d \textit {\_a}} g \left (\textit {\_a} \right )d \textit {\_a} \right )+c_{1} =0\right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=y \left (x \right )\right \}, \left \{x =\textit {\_a} , y \left (x \right )=\textit {\_}b\left (\textit {\_a} \right )\right \}\right ]\]