2.1626   ODE No. 1626

\[ y(x) f'(x)+f(x) y'(x)+y''(x)+2 y(x) y'(x)=0 \]

Mathematica : cpu = 29.9985 (sec), leaf count = 0

DSolve[y[x]*Derivative[1][f][x] + f[x]*Derivative[1][y][x] + 2*y[x]*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[y[x]*Derivative[1][f][x] + f[x]*Derivative[1][y][x] + 2*y[x]*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)+2*y(x)*diff(y(x),x)+f(x)*diff(y(x),x)+diff(f(x),x)*y(x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_}b\left (\textit {\_a} \right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=-\textit {\_}b\left (\textit {\_a} \right )^{2}-f \left (\textit {\_a} \right ) \textit {\_}b\left (\textit {\_a} \right )-c_{1} \right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=y \left (x \right )\right \}, \left \{x =\textit {\_a} , y \left (x \right )=\textit {\_}b\left (\textit {\_a} \right )\right \}\right ]\]