2.1628   ODE No. 1628

\[ f(x) y(x)-g(x)+y''(x)+3 y(x) y'(x)+y(x)^3=0 \]

Mathematica : cpu = 2.757 (sec), leaf count = 0

DSolve[-g[x] + f[x]*y[x] + y[x]^3 + 3*y[x]*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-g[x] + f[x]*y[x] + y[x]^3 + 3*y[x]*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)+3*y(x)*diff(y(x),x)+y(x)^3+f(x)*y(x)-g(x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{-g \left (x \right ) \textit {\_Y} \left (x \right )+f \left (x \right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )+\frac {d^{3}}{d x^{3}}\textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{-g \left (x \right ) \textit {\_Y} \left (x \right )+f \left (x \right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )+\frac {d^{3}}{d x^{3}}\textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}\]