3.25.6 Problems 501 to 600

Table 3.885: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

13594

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

13595

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

13596

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

13597

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13598

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13600

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13601

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13602

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13603

\[ {}y^{\prime \prime }+25 y = 0 \]

13604

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13605

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

13606

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

13607

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

13608

\[ {}4 y^{\prime \prime }+y = 0 \]

13609

\[ {}y^{\prime \prime }+16 y = 0 \]

13610

\[ {}y^{\prime \prime }+16 y = 0 \]

13611

\[ {}y^{\prime \prime }+16 y = 0 \]

13612

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13613

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13614

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13615

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

13616

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

13799

\[ {}y^{\prime \prime }+36 y = 0 \]

13800

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

13802

\[ {}y^{\prime \prime }-36 y = 0 \]

13803

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

13807

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

13808

\[ {}y^{\prime \prime }+3 y = 0 \]

13813

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

13816

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

13818

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]

13819

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

13826

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

13828

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

13863

\[ {}y^{\prime \prime }-9 y = 0 \]

13866

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

13868

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

13869

\[ {}y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

14057

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14058

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

14059

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

14061

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

14086

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14087

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

14099

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

14108

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

14109

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

14445

\[ {}y^{\prime \prime }-y = 0 \]

14446

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14448

\[ {}y^{\prime \prime }+9 y = 0 \]

14449

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14450

\[ {}y^{\prime \prime }+9 y = 0 \]

14454

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

14455

\[ {}y^{\prime \prime }+16 y = 0 \]

14456

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

14458

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

14459

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

14460

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

14461

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

14462

\[ {}y^{\prime \prime }+9 y = 0 \]

14463

\[ {}y^{\prime \prime }+49 y = 0 \]

14468

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

14474

\[ {}y^{\prime \prime } = 0 \]

14475

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

14476

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

14477

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

14478

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

14479

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

14480

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

14481

\[ {}4 y^{\prime \prime }+9 y = 0 \]

14482

\[ {}y^{\prime \prime }+16 y = 0 \]

14483

\[ {}y^{\prime \prime }+8 y = 0 \]

14484

\[ {}y^{\prime \prime }+7 y = 0 \]

14485

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

14486

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

14487

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

14488

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

14489

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

14490

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]

14491

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]

14492

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

14493

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

14494

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

14495

\[ {}y^{\prime \prime }+36 y = 0 \]

14496

\[ {}y^{\prime \prime }+100 y = 0 \]

14497

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

14498

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

14499

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14500

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

14501

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]

14502

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

14503

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

14504

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]

14505

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

14506

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

14507

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

14510

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

14511

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

14512

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]