3.25.7 Problems 601 to 665

Table 3.887: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

14513

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

14514

\[ {}y^{\prime \prime }-16 y = 0 \]

14515

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14518

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

14828

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

14829

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14830

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

14833

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

14834

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

14835

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

14836

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

14837

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

14838

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

14839

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

14840

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

14841

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

14859

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

14860

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

14861

\[ {}y^{\prime \prime }+16 y = 0 \]

14862

\[ {}y^{\prime \prime }+25 y = 0 \]

14874

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

14875

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

14893

\[ {}4 x^{\prime \prime }+9 x = 0 \]

14894

\[ {}9 x^{\prime \prime }+4 x = 0 \]

14895

\[ {}x^{\prime \prime }+64 x = 0 \]

14896

\[ {}x^{\prime \prime }+100 x = 0 \]

14897

\[ {}x^{\prime \prime }+x = 0 \]

14898

\[ {}x^{\prime \prime }+4 x = 0 \]

14899

\[ {}x^{\prime \prime }+16 x = 0 \]

14900

\[ {}x^{\prime \prime }+256 x = 0 \]

14901

\[ {}x^{\prime \prime }+9 x = 0 \]

14902

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

14903

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

14904

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

14905

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

14906

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

14907

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

14908

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

14930

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

14931

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

15181

\[ {}y^{\prime \prime }+y = 0 \]

15222

\[ {}y^{\prime \prime }-y = 0 \]

15223

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

15225

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15226

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

15228

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

15230

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

15233

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

15234

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

15440

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

15441

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

15442

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

15450

\[ {}y^{\prime \prime }+\lambda y = 0 \]

15451

\[ {}y^{\prime \prime }+\lambda y = 0 \]

15452

\[ {}y^{\prime \prime }-y = 0 \]

15453

\[ {}y^{\prime \prime }+y = 0 \]

15455

\[ {}y^{\prime \prime }+y = 0 \]

15456

\[ {}y^{\prime \prime }-y = 0 \]

15457

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

15458

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]

15461

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

15462

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]

15558

\[ {}x^{\prime \prime } = 0 \]

15561

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]

15562

\[ {}x^{\prime \prime }+x^{\prime } = 0 \]