3.25.5 Problems 401 to 500

Table 3.883: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

12017

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

12018

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]

12019

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]

12020

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

12021

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]

12022

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12023

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]

12024

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]

12025

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

12026

\[ {}y^{\prime \prime }-4 y = 0 \]

12027

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

12028

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]

12070

\[ {}a y^{\prime \prime }+\left (-a +b \right ) y^{\prime }+c y = 0 \]

12244

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

12246

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

12283

\[ {}y^{\prime \prime }+9 y = 0 \]

12284

\[ {}4 y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

12285

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12286

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

12287

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

12288

\[ {}4 y^{\prime \prime }-4 y^{\prime }+37 y = 0 \]

12289

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

12290

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

12291

\[ {}4 y^{\prime \prime }-12 y^{\prime }+13 y = 0 \]

12292

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 0 \]

12293

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

12295

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

12296

\[ {}y^{\prime \prime }-20 y^{\prime }+51 y = 0 \]

12297

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

12298

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

12299

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

12300

\[ {}4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

12301

\[ {}y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

12413

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

12414

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

12415

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

12492

\[ {}y^{\prime \prime } = a^{2} y \]

12501

\[ {}y^{\prime \prime } = 9 y \]

12502

\[ {}y^{\prime \prime }+y = 0 \]

12503

\[ {}y^{\prime \prime }-y = 0 \]

12504

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

12505

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

12506

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

12507

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

12508

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

12509

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

12531

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]

12577

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

12587

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

12588

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

12599

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

12601

\[ {}y^{\prime \prime }-y = 0 \]

12604

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

12605

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

12606

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

12607

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

12750

\[ {}y^{\prime \prime }-y = 0 \]

12751

\[ {}y^{\prime \prime }+y = 0 \]

12754

\[ {}y^{\prime \prime }-y = 0 \]

12760

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

12770

\[ {}y^{\prime \prime }+\alpha y = 0 \]

12786

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

12803

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

13126

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

13127

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13157

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

13158

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13159

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13160

\[ {}y^{\prime \prime }+2 y = 0 \]

13239

\[ {}y^{\prime \prime }+16 y = 0 \]

13241

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13475

\[ {}y^{\prime \prime } = y^{\prime } \]

13495

\[ {}y^{\prime \prime } = y^{\prime } \]

13509

\[ {}y^{\prime \prime } = y^{\prime } \]

13536

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13537

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

13544

\[ {}y^{\prime \prime }+y = 0 \]

13560

\[ {}y^{\prime \prime }+4 y = 0 \]

13561

\[ {}y^{\prime \prime }-4 y = 0 \]

13562

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13563

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

13573

\[ {}y^{\prime \prime }-4 y = 0 \]

13574

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

13575

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

13576

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

13579

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

13580

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

13581

\[ {}y^{\prime \prime }-25 y = 0 \]

13582

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

13583

\[ {}4 y^{\prime \prime }-y = 0 \]

13584

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

13585

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13586

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13587

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

13588

\[ {}y^{\prime \prime }-9 y = 0 \]

13589

\[ {}y^{\prime \prime }-9 y = 0 \]

13590

\[ {}y^{\prime \prime }-9 y = 0 \]

13591

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

13592

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13593

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]