3.3.42 Problems 4101 to 4200

Table 3.315: Second order ode




#

ODE

Mathematica

Maple





12613

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]





12614

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]





12744

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]





12746

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]





12747

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]





12748

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]





12749

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]





12750

\[ {}y^{\prime \prime }-y = 0 \]





12751

\[ {}y^{\prime \prime }+y = 0 \]





12752

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]





12753

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]





12754

\[ {}y^{\prime \prime }-y = 0 \]





12756

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]





12757

\[ {}y^{\prime \prime }-4 y = 31 \]





12758

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]





12759

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]





12760

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]





12770

\[ {}y^{\prime \prime }+\alpha y = 0 \]





12786

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]





12788

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]





12789

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]





12790

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]





12794

\[ {}y^{\prime \prime }-9 y = 2+x \]





12795

\[ {}y^{\prime \prime }+9 y = 2+x \]





12796

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]





12797

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]





12801

\[ {}y^{\prime \prime }+9 y = 1 \]





12802

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]





12803

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]





12804

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]





12805

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]





12808

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]





12809

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (-1+x \right )^{2} & 1\le x \end {array}\right . \]





12810

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]





12811

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]





12812

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]





12813

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]





12816

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]





12817

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (-1+x \right ) \]





12818

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]





12819

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]





12820

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]





13126

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]





13127

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]





13157

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]





13158

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]





13159

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





13160

\[ {}y^{\prime \prime }+2 y = 0 \]





13161

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]





13162

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]





13163

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]





13164

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]





13165

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]





13166

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]





13167

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]





13168

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]





13169

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]





13170

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]





13171

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]





13172

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]





13173

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]





13174

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]





13175

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]





13176

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]





13177

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]





13178

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]





13179

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]





13180

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]





13181

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]





13182

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]





13183

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]





13184

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]





13185

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]





13186

\[ {}y^{\prime \prime }+2 y = -3 \]





13187

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]





13188

\[ {}y^{\prime \prime }+9 y = 6 \]





13189

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]





13190

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]





13191

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]





13192

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]





13193

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]





13194

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]





13195

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]





13196

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]





13197

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]





13198

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]





13199

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]





13200

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]





13201

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]





13202

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]





13203

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]





13204

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]





13205

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]





13206

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]





13207

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]





13208

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]





13209

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]





13210

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]





13211

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]





13212

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]