3.3.41 Problems 4001 to 4100

Table 3.313: Second order ode




#

ODE

Mathematica

Maple





12332

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (-1+t \right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]





12333

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]





12334

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]





12335

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]





12336

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]





12337

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]





12338

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (-1+t \right ) \]





12339

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (-1+t \right ) \]





12340

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]





12341

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (-1+t \right ) \]





12342

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (-1+t \right ) \]





12343

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (-1+t \right ) \]





12351

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]





12352

\[ {}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]





12353

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]





12354

\[ {}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]





12355

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]





12356

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]





12357

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]





12358

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]





12360

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]





12394

\[ {}\left (-1+x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]





12395

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]





12396

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{\frac {3}{2}} {\mathrm e}^{x} \]





12397

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]





12398

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]





12399

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]





12400

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]





12401

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]





12410

\[ {}y^{\prime \prime }-x^{2} y = 0 \]





12411

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]





12412

\[ {}x y^{\prime \prime }+\left (1+x \right )^{2} y = 0 \]





12413

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]





12414

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]





12415

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]





12416

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]





12417

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]





12423

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]





12424

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]





12425

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]





12490

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]





12492

\[ {}y^{\prime \prime } = a^{2} y \]





12493

\[ {}y^{\prime \prime } = \frac {a}{y^{3}} \]





12494

\[ {}x y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} x^{2} \]





12495

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+{y^{\prime }}^{3} = 0 \]





12496

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]





12497

\[ {}{y^{\prime \prime }}^{2}+{y^{\prime }}^{2} = a^{2} \]





12498

\[ {}y^{\prime \prime } = \frac {1}{2 y^{\prime }} \]





12501

\[ {}y^{\prime \prime } = 9 y \]





12502

\[ {}y^{\prime \prime }+y = 0 \]





12503

\[ {}y^{\prime \prime }-y = 0 \]





12504

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]





12505

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]





12506

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]





12507

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]





12508

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]





12509

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]





12518

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]





12519

\[ {}s^{\prime \prime }-a^{2} s = t +1 \]





12520

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]





12521

\[ {}y^{\prime \prime }-y = 5 x +2 \]





12522

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]





12523

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]





12524

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]





12525

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]





12526

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = \cos \left (x \right ) {\mathrm e}^{-x} \]





12527

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]





12531

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]





12532

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]





12533

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]





12534

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]





12535

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{\frac {3}{2}}} \]





12539

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]





12542

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]





12545

\[ {}y^{\prime \prime }-4 y = \sin \left (2 x \right ) {\mathrm e}^{2 x} \]





12568

\[ {}x^{\prime \prime }+x-x^{3} = 0 \]





12569

\[ {}x^{\prime \prime }+x+x^{3} = 0 \]





12570

\[ {}x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]





12571

\[ {}x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]





12572

\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]





12574

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]





12576

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]





12577

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]





12578

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]





12584

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]





12587

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]





12588

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





12591

\[ {}x^{2} y^{\prime \prime }-x y^{\prime } = 0 \]





12592

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]





12593

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]





12599

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]





12601

\[ {}y^{\prime \prime }-y = 0 \]





12604

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]





12605

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]





12606

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]





12607

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]





12609

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]





12610

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]





12611

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]





12612

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]