3.3.43 Problems 4201 to 4300

Table 3.317: Second order ode




#

ODE

Mathematica

Maple





13213

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]





13214

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]





13215

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]





13216

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]





13217

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]





13218

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]





13219

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]





13220

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]





13221

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]





13222

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]





13223

\[ {}y^{\prime \prime }+4 y = 8 \]





13224

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]





13225

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 \,{\mathrm e}^{t} \]





13226

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 13 \operatorname {Heaviside}\left (t -4\right ) \]





13227

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right ) \]





13228

\[ {}y^{\prime \prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \cos \left (5 t -20\right ) \]





13229

\[ {}y^{\prime \prime }+4 y^{\prime }+9 y = 20 \operatorname {Heaviside}\left (t -2\right ) \sin \left (t -2\right ) \]





13230

\[ {}y^{\prime \prime }+3 y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 1 & 1\le t \end {array}\right . \]





13231

\[ {}y^{\prime \prime }+3 y = 5 \delta \left (t -2\right ) \]





13232

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -3\right ) \]





13233

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = -2 \delta \left (t -2\right ) \]





13234

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \delta \left (-1+t \right )-3 \delta \left (t -4\right ) \]





13235

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = {\mathrm e}^{-2 t} \sin \left (4 t \right ) \]





13236

\[ {}y^{\prime \prime }+y^{\prime }+5 y = \operatorname {Heaviside}\left (t -2\right ) \sin \left (4 t -8\right ) \]





13237

\[ {}y^{\prime \prime }+y^{\prime }+8 y = \left (1-\operatorname {Heaviside}\left (t -4\right )\right ) \cos \left (t -4\right ) \]





13238

\[ {}y^{\prime \prime }+y^{\prime }+3 y = \left (1-\operatorname {Heaviside}\left (t -2\right )\right ) {\mathrm e}^{-\frac {t}{10}+\frac {1}{5}} \sin \left (t -2\right ) \]





13239

\[ {}y^{\prime \prime }+16 y = 0 \]





13240

\[ {}y^{\prime \prime }+4 y = \sin \left (2 t \right ) \]





13241

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





13242

\[ {}y^{\prime \prime }+16 y = t \]





13248

\[ {}y^{\prime \prime } = \frac {1+x}{-1+x} \]





13249

\[ {}x^{2} y^{\prime \prime } = 1 \]





13250

\[ {}y^{2} y^{\prime \prime } = 8 x^{2} \]





13251

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]





13252

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 0 \]





13262

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]





13263

\[ {}y^{\prime \prime }-3 = x \]





13271

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]





13473

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]





13474

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]





13475

\[ {}y^{\prime \prime } = y^{\prime } \]





13476

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]





13477

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]





13478

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]





13479

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]





13480

\[ {}y^{\prime } y^{\prime \prime } = 1 \]





13481

\[ {}y y^{\prime \prime } = -{y^{\prime }}^{2} \]





13482

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]





13483

\[ {}x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]





13484

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]





13485

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]





13486

\[ {}\left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]





13487

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]





13492

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]





13493

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]





13494

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]





13495

\[ {}y^{\prime \prime } = y^{\prime } \]





13496

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]





13497

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]





13498

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]





13499

\[ {}y^{\prime } y^{\prime \prime } = 1 \]





13500

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]





13501

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]





13502

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]





13503

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]





13504

\[ {}\left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]





13505

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]





13506

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]





13507

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]





13508

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]





13509

\[ {}y^{\prime \prime } = y^{\prime } \]





13510

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]





13513

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]





13514

\[ {}2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]





13515

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]





13516

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]





13517

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]





13518

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]





13519

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]





13520

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]





13521

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]





13522

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]





13523

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]





13524

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]





13525

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]





13526

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]





13527

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]





13528

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]





13529

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]





13532

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]





13533

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]





13536

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]





13537

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]





13538

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]





13539

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]





13540

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]





13541

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]





13542

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]





13543

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]





13544

\[ {}y^{\prime \prime }+y = 0 \]