3.2.44 Problems 4301 to 4400

Table 3.225: Second order linear ODE




#

ODE

Mathematica

Maple





14740

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]





14741

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]





14742

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]





14743

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]





14748

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]





14749

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]





14750

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]





14751

\[ {}9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]





14752

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]





14753

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]





14754

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]





14759

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]





14760

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]





14761

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]





14762

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]





14763

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]





14764

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]





14765

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]





14766

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]





14767

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]





14768

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]





14769

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]





14776

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]





14828

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]





14829

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]





14830

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]





14831

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]





14832

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]





14833

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]





14834

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]





14835

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]





14836

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]





14837

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]





14838

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]





14839

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]





14840

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]





14841

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]





14845

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]





14846

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]





14847

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]





14848

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]





14849

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]





14850

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{{\mathrm e}^{2 t}+1} \]





14851

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]





14852

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]





14853

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]





14854

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]





14859

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]





14860

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]





14861

\[ {}y^{\prime \prime }+16 y = 0 \]





14862

\[ {}y^{\prime \prime }+25 y = 0 \]





14863

\[ {}y^{\prime \prime }-4 y = t \]





14864

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]





14865

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]





14866

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]





14867

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]





14868

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]





14869

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]





14870

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]





14871

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]





14872

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]





14873

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]





14874

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]





14875

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]





14876

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]





14877

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]





14878

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]





14879

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]





14880

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]





14881

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]





14882

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]





14883

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]





14893

\[ {}4 x^{\prime \prime }+9 x = 0 \]





14894

\[ {}9 x^{\prime \prime }+4 x = 0 \]





14895

\[ {}x^{\prime \prime }+64 x = 0 \]





14896

\[ {}x^{\prime \prime }+100 x = 0 \]





14897

\[ {}x^{\prime \prime }+x = 0 \]





14898

\[ {}x^{\prime \prime }+4 x = 0 \]





14899

\[ {}x^{\prime \prime }+16 x = 0 \]





14900

\[ {}x^{\prime \prime }+256 x = 0 \]





14901

\[ {}x^{\prime \prime }+9 x = 0 \]





14902

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]





14903

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]





14904

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]





14905

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]





14906

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]





14907

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]





14908

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]





14909

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





14910

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





14911

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]





14912

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]





14913

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]





14914

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]





14915

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]





14916

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]





14917

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]





14930

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]





14931

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]





14932

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]