3.2.45 Problems 4401 to 4500

Table 3.227: Second order linear ODE

#

ODE

Mathematica

Maple

14933

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

15176

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

15179

\[ {}\left (-1+x \right ) y^{\prime \prime } = 1 \]

15181

\[ {}y^{\prime \prime }+y = 0 \]

15182

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

15187

\[ {}y^{\prime \prime } \left (2+x \right )^{5} = 1 \]

15188

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

15189

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

15190

\[ {}x y^{\prime \prime } = y^{\prime } \]

15191

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

15192

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

15193

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

15194

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

15205

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]

15222

\[ {}y^{\prime \prime }-y = 0 \]

15223

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

15225

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15226

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

15228

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

15230

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

15233

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

15234

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

15244

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

15245

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (-1+x \right )^{2} \]

15246

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

15247

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

15248

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

15249

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

15250

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

15251

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

15252

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

15253

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

15254

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

15255

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

15256

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

15257

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

15258

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

15259

\[ {}y^{\prime \prime }+k^{2} y = k \]

15280

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

15281

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

15282

\[ {}y^{\prime \prime }+9 y = 9 \]

15288

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

15289

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

15290

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

15291

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

15292

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

15293

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

15294

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

15295

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

15296

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 1+x \]

15297

\[ {}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

15298

\[ {}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

15299

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

15300

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

15301

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \sin \left (2 x \right ) {\mathrm e}^{-x} \]

15302

\[ {}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

15303

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

15304

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \left (\cos \left (x \right )+\sin \left (x \right )\right ) {\mathrm e}^{x} \]

15305

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \cos \left (x \right ) {\mathrm e}^{-2 x} \]

15306

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

15307

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x} \]

15308

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

15309

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

15312

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{3} \]

15314

\[ {}y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

15315

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

15319

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

15320

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

15321

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

15322

\[ {}y^{\prime \prime }-y = \sin \left (x \right )+x \]

15323

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (\sin \left (x \right )+1\right ) {\mathrm e}^{x} \]

15326

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sin \left (x \right ) \]

15327

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

15328

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

15329

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

15330

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

15331

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

15332

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

15333

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

15334

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2} \]

15336

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

15338

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

15339

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

15340

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

15341

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]

15342

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \]

15343

\[ {}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \]

15344

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

15345

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

15346

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

15347

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

15348

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

15349

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

15350

\[ {}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

15351

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

15352

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

15354

\[ {}y^{\prime \prime }+y = 2 \sin \left (2 x \right ) \sin \left (x \right ) \]

15359

\[ {}y^{\prime \prime }+y = 2-2 x \]

15360

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]

15361

\[ {}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]