3.2.43 Problems 4201 to 4300

Table 3.223: Second order linear ODE




#

ODE

Mathematica

Maple





14551

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]





14552

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]





14553

\[ {}y^{\prime \prime }-y = 4 \]





14554

\[ {}y^{\prime \prime }-4 y = 32 t \]





14555

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]





14556

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 3 t \]





14557

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]





14558

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]





14559

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]





14560

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]





14561

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]





14562

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]





14563

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]





14564

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]





14565

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]





14566

\[ {}y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]





14567

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]





14573

\[ {}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]





14574

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]





14575

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]





14576

\[ {}y^{\prime \prime }+4 y = 1 \]





14577

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]





14578

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]





14579

\[ {}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]





14580

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]





14581

\[ {}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]





14582

\[ {}y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]





14583

\[ {}y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]





14584

\[ {}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]





14585

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]





14586

\[ {}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]





14587

\[ {}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]





14588

\[ {}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]





14589

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]





14590

\[ {}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]





14591

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]





14592

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]





14593

\[ {}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]





14594

\[ {}y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]





14595

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]





14596

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]





14597

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]





14598

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]





14599

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]





14600

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]





14601

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]





14602

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]





14603

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]





14604

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]





14605

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]





14606

\[ {}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]





14607

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]





14608

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]





14609

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]





14610

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]





14611

\[ {}y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]





14612

\[ {}y^{\prime \prime }+4 y = \tan \left (t \right ) \]





14613

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]





14614

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]





14615

\[ {}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]





14616

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]





14617

\[ {}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]





14618

\[ {}y^{\prime \prime }+y = \tan \left (t \right )^{2} \]





14619

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]





14620

\[ {}y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]





14621

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]





14622

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]





14623

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]





14624

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]





14625

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]





14627

\[ {}y^{\prime \prime }+4 y = f \left (t \right ) \]





14628

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]





14629

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]





14630

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]





14631

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]





14632

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]





14633

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{\frac {3}{2}} \]





14634

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{\frac {3}{2}} \]





14635

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]





14636

\[ {}\left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]





14710

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]





14711

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]





14712

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]





14713

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]





14714

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]





14715

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]





14716

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]





14717

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]





14718

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]





14719

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]





14720

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]





14721

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]





14730

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]





14731

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]





14732

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]





14733

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]





14734

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]





14735

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]





14736

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]





14737

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]