# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+49 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \] |
✓ |
✓ |
|
\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+8 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+7 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+36 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+100 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \] |
✓ |
✓ |
|
\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 2 t -4 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 3 t^{4}-2 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \] |
✓ |
✓ |
|
\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \] |
✓ |
✓ |
|
\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \] |
✓ |
✓ |
|
\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \] |
✓ |
✓ |
|