3.2.42 Problems 4101 to 4200

Table 3.221: Second order linear ODE

#

ODE

Mathematica

Maple

14449

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

14450

\[ {}y^{\prime \prime }+9 y = 0 \]

14451

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

14452

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

14453

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]

14454

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

14455

\[ {}y^{\prime \prime }+16 y = 0 \]

14456

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

14457

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

14458

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

14459

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

14460

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

14461

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

14462

\[ {}y^{\prime \prime }+9 y = 0 \]

14463

\[ {}y^{\prime \prime }+49 y = 0 \]

14464

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

14465

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

14466

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

14467

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

14468

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

14469

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

14470

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

14471

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

14472

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

14473

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

14474

\[ {}y^{\prime \prime } = 0 \]

14475

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

14476

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

14477

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

14478

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

14479

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

14480

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

14481

\[ {}4 y^{\prime \prime }+9 y = 0 \]

14482

\[ {}y^{\prime \prime }+16 y = 0 \]

14483

\[ {}y^{\prime \prime }+8 y = 0 \]

14484

\[ {}y^{\prime \prime }+7 y = 0 \]

14485

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

14486

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

14487

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

14488

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

14489

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

14490

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]

14491

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]

14492

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

14493

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

14494

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

14495

\[ {}y^{\prime \prime }+36 y = 0 \]

14496

\[ {}y^{\prime \prime }+100 y = 0 \]

14497

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

14498

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

14499

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14500

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

14501

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]

14502

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

14503

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

14504

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]

14505

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

14506

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

14507

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

14508

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

14509

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

14510

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

14511

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

14512

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

14513

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

14514

\[ {}y^{\prime \prime }-16 y = 0 \]

14515

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14518

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

14519

\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

14520

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

14521

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

14522

\[ {}y^{\prime \prime }-y = 2 t -4 \]

14523

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

14524

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

14525

\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \]

14526

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

14527

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

14528

\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

14529

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

14530

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

14531

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \]

14532

\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

14533

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

14534

\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

14535

\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

14536

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

14537

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

14538

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

14539

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

14540

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

14541

\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

14542

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

14543

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

14544

\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

14545

\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

14546

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

14547

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

14548

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

14549

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

14550

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]