2.2.168 Problems 16701 to 16800

Table 2.337: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16701

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]
i.c.

[[_linear, ‘class A‘]]

1.381

16702

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

2.985

16703

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

2.081

16704

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

2.437

16705

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

2.493

16706

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

1.963

16707

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]

[_separable]

2.659

16708

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

3.198

16709

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

1.163

16710

\[ {}y \ln \left (y\right )+y^{\prime } x = 1 \]
i.c.

[_separable]

2.752

16711

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

1.703

16712

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

2.982

16713

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

[_separable]

2.148

16714

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left (1+{\mathrm e}^{2 x}\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.499

16715

\[ {}y^{2} \sin \left (x \right )+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.830

16716

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.542

16717

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

0.704

16718

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4.259

16719

\[ {}y^{\prime } x +y = a \left (1+x y\right ) \]
i.c.

[_linear]

1.007

16720

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

3.234

16721

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.273

16722

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

[_quadrature]

0.700

16723

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

[_quadrature]

0.583

16724

\[ {}\sin \left (y^{\prime }\right ) = x \]

[_quadrature]

0.315

16725

\[ {}\ln \left (y^{\prime }\right ) = x \]

[_quadrature]

0.378

16726

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

[_quadrature]

0.582

16727

\[ {}{\mathrm e}^{y^{\prime }} = x \]

[_quadrature]

0.318

16728

\[ {}\tan \left (y^{\prime }\right ) = x \]

[_quadrature]

0.440

16729

\[ {}x^{2} y^{\prime } \cos \left (y\right )+1 = 0 \]
i.c.

[_separable]

2.346

16730

\[ {}x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]
i.c.

[_separable]

3.269

16731

\[ {}x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]
i.c.

[_separable]

3.414

16732

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]
i.c.

[_separable]

9.638

16733

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

1.468

16734

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

1.830

16735

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

1.461

16736

\[ {}x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]
i.c.

[_separable]

11.049

16737

\[ {}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.075

16738

\[ {}x -y+y^{\prime } x = 0 \]

[_linear]

1.507

16739

\[ {}y^{\prime } x = y \left (\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.151

16740

\[ {}x^{2} y^{\prime } = y^{2}-x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.170

16741

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.812

16742

\[ {}2 x^{2} y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.182

16743

\[ {}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.503

16744

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.569

16745

\[ {}x +y-2+\left (1-x \right ) y^{\prime } = 0 \]

[_linear]

1.300

16746

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.990

16747

\[ {}x +y-2+\left (x -y+4\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.413

16748

\[ {}x +y+\left (x -y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.370

16749

\[ {}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.526

16750

\[ {}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.283

16751

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.932

16752

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.995

16753

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.885

16754

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.258

16755

\[ {}y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘]]

2.248

16756

\[ {}x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.793

16757

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

1.267

16758

\[ {}x^{2}-y^{\prime } x = y \]
i.c.

[_linear]

1.922

16759

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

[_linear]

2.382

16760

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

[_linear]

1.572

16761

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]
i.c.

[_linear]

2.247

16762

\[ {}y^{\prime } x -2 y = x^{3} \cos \left (x \right ) \]

[_linear]

1.774

16763

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]
i.c.

[_linear]

9.617

16764

\[ {}y^{\prime } x \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

[_linear]

1.435

16765

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

[[_homogeneous, ‘class G‘], _rational]

2.050

16766

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]
i.c.

[_separable]

1.833

16767

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

1.438

16768

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.421

16769

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

[_linear]

1.404

16770

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

[_linear]

1.454

16771

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (\cos \left (x \right )-1\right ) \ln \left (2\right ) \]

[[_linear, ‘class A‘]]

2.186

16772

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

1.116

16773

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]
i.c.

[_linear]

3.923

16774

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]
i.c.

[_linear]

2.283

16775

\[ {}2 y^{\prime } x -y = 1-\frac {2}{\sqrt {x}} \]
i.c.

[_linear]

1.312

16776

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]
i.c.

[_linear]

1.645

16777

\[ {}y^{\prime } x +y = 2 x \]

[_linear]

2.349

16778

\[ {}y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 1 \]

[_linear]

1.855

16779

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]
i.c.

[_linear]

2.671

16780

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

[_separable]

2.098

16781

\[ {}3 x y^{2} y^{\prime }-2 y^{3} = x^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

9.279

16782

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

[[_1st_order, _with_linear_symmetries]]

1.360

16783

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

[_separable]

1.900

16784

\[ {}y^{\prime }-2 y \,{\mathrm e}^{x} = 2 \sqrt {y \,{\mathrm e}^{x}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.779

16785

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

[_Bernoulli]

4.362

16786

\[ {}2 y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = y^{3} \sin \left (x \right )^{2} \]

[_Bernoulli]

8.401

16787

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.305

16788

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

[_separable]

2.503

16789

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

2.271

16790

\[ {}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.072

16791

\[ {}y^{\prime } \cos \left (y\right )+\sin \left (y\right ) = x +1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.717

16792

\[ {}y y^{\prime }+1 = \left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}} \]

[‘y=_G(x,y’)‘]

2.750

16793

\[ {}y^{\prime }+x \sin \left (2 y\right ) = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

6.094

16794

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

260.178

16795

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.632

16796

\[ {}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

25.311

16797

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

45.832

16798

\[ {}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}} \]

[[_homogeneous, ‘class D‘], _exact, _rational]

3.467

16799

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

[_exact]

33.401

16800

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.302