2.2.169 Problems 16801 to 16900

Table 2.339: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16801

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_separable]

18.625

16802

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

[_exact]

35.850

16803

\[ {}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

51.612

16804

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

10.831

16805

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (x^{2}+y^{2}-a^{2}\right ) = 0 \]

[_exact, _rational]

1.684

16806

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

109.938

16807

\[ {}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.244

16808

\[ {}x^{2}+y-y^{\prime } x = 0 \]

[_linear]

1.525

16809

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.792

16810

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

[_linear]

1.336

16811

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 x^{2} y^{2} y^{\prime } = 0 \]

[_Bernoulli]

1.712

16812

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+y^{\prime } \cos \left (y\right ) = 0 \]

[‘y=_G(x,y’)‘]

3.591

16813

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

[_rational]

2.345

16814

\[ {}3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.984

16815

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

[_rational, _Bernoulli]

2.058

16816

\[ {}x -x y+\left (y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.189

16817

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

[_quadrature]

0.250

16818

\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right ) \]

[_separable]

0.419

16819

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x -8 x^{2} = 0 \]

[_quadrature]

0.875

16820

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

4.115

16821

\[ {}{y^{\prime }}^{2}-\left (2 x +y\right ) y^{\prime }+x^{2}+x y = 0 \]

[_quadrature]

1.575

16822

\[ {}{y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0 \]

[[_1st_order, _with_exponential_symmetries]]

0.766

16823

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

1.559

16824

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.200

16825

\[ {}{y^{\prime }}^{2}-4 y^{\prime } x +2 y+2 x^{2} = 0 \]

[[_homogeneous, ‘class G‘]]

2.114

16826

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

1.556

16827

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

[_quadrature]

2.970

16828

\[ {}x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \]

[_quadrature]

1.891

16829

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

[_quadrature]

0.201

16830

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

[_quadrature]

4.282

16831

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

[_quadrature]

1.309

16832

\[ {}{y^{\prime }}^{2} x = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

[_quadrature]

0.491

16833

\[ {}x \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} = a \]

[_quadrature]

1.878

16834

\[ {}y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}} \]

[_quadrature]

2.355

16835

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

[_quadrature]

0.503

16836

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

[_quadrature]

1.663

16837

\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left ({y^{\prime }}^{2}+1\right ) \]

[_quadrature]

3.309

16838

\[ {}y = 2 y^{\prime } x +\ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.329

16839

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.460

16840

\[ {}y = 2 y^{\prime } x +\sin \left (y^{\prime }\right ) \]

[_dAlembert]

1.117

16841

\[ {}y = {y^{\prime }}^{2} x -\frac {1}{y^{\prime }} \]

[_dAlembert]

2.914

16842

\[ {}y = \frac {3 y^{\prime } x}{2}+{\mathrm e}^{y^{\prime }} \]

[_dAlembert]

1.020

16843

\[ {}y = y^{\prime } x +\frac {a}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.760

16844

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.318

16845

\[ {}{y^{\prime }}^{2} x -y y^{\prime }-y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.465

16846

\[ {}y = y^{\prime } x +a \sqrt {{y^{\prime }}^{2}+1} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

6.006

16847

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.352

16848

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.210

16849

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.524

16850

\[ {}y^{\prime } x -y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

1.808

16851

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+x y+1 \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.608

16852

\[ {}\left ({y^{\prime }}^{2}+1\right ) y^{2}-4 y y^{\prime }-4 x = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.946

16853

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

0.536

16854

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

7.220

16855

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

2.439

16856

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

3.003

16857

\[ {}\left (y^{\prime } x +y\right )^{2}+3 x^{5} \left (y^{\prime } x -2 y\right ) = 0 \]

[[_homogeneous, ‘class G‘]]

8.421

16858

\[ {}y \left (y-2 y^{\prime } x \right )^{2} = 2 y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

3.059

16859

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

[[_homogeneous, ‘class C‘], _dAlembert]

0.677

16860

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

2.039

16861

\[ {}y = {y^{\prime }}^{2}-y^{\prime } x +x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.467

16862

\[ {}\left (y^{\prime } x +y\right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.600

16863

\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

0.532

16864

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.176

16865

\[ {}3 {y^{\prime }}^{2} x -6 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.308

16866

\[ {}y = y^{\prime } x +\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

7.245

16867

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

[[_homogeneous, ‘class C‘], _Riccati]

2.684

16868

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

[_linear]

6.703

16869

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

4.940

16870

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

14.058

16871

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

129.046

16872

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.504

16873

\[ {}y-x y^{2} \ln \left (x \right )+y^{\prime } x = 0 \]

[_Bernoulli]

2.284

16874

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_linear]

2.326

16875

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

[[_1st_order, _with_exponential_symmetries]]

1.101

16876

\[ {}x^{2}+y^{\prime } x = 3 x +y^{\prime } \]

[_quadrature]

0.555

16877

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

3.312

16878

\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

25.438

16879

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

[_linear]

1.266

16880

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.448

16881

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

[_separable]

5.408

16882

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

[_separable]

1.733

16883

\[ {}x y^{2} y^{\prime }-y^{3} = \frac {x^{4}}{3} \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.985

16884

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

5.123

16885

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.356

16886

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.762

16887

\[ {}x y^{2}+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.143

16888

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.114

16889

\[ {}\left (x -1\right ) \left (y^{2}-y+1\right ) = \left (-1+y\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

[_separable]

1.930

16890

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.877

16891

\[ {}y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.036

16892

\[ {}y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.263

16893

\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.164

16894

\[ {}x^{2} y^{n} y^{\prime } = 2 y^{\prime } x -y \]

[[_homogeneous, ‘class G‘], _rational]

1.299

16895

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.807

16896

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.875

16897

\[ {}y^{\prime } x +y = y^{2} \ln \left (x \right ) \]
i.c.

[_Bernoulli]

2.419

16898

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

[_separable]

2.176

16899

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.198

16900

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.659