2.2.167 Problems 16601 to 16700

Table 2.335: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16601

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.447

16602

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.074

16603

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.360

16604

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

1.066

16605

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.186

16606

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1.195

16607

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

1.109

16608

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.127

16609

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.215

16610

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2.016

16611

\[ {}5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

2.004

16612

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

2.470

16613

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 8 x \]

[[_2nd_order, _with_linear_symmetries]]

1.453

16614

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.658

16615

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.720

16616

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -3 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.586

16617

\[ {}3 x y^{\prime \prime }+11 y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.798

16618

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.710

16619

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +\left (-2 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.252

16620

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0 \]

[_Jacobi]

0.789

16621

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.794

16622

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y^{\prime } y = 1 \]
i.c.

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.604

16623

\[ {}4 x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.333

16624

\[ {}9 x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.274

16625

\[ {}x^{\prime \prime }+64 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.341

16626

\[ {}x^{\prime \prime }+100 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.408

16627

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.080

16628

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.378

16629

\[ {}x^{\prime \prime }+16 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.338

16630

\[ {}x^{\prime \prime }+256 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.510

16631

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.056

16632

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.298

16633

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.651

16634

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.355

16635

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.701

16636

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.868

16637

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.826

16638

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.701

16639

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.501

16640

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5.094

16641

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.906

16642

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ -t +1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

26.544

16643

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.042

16644

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.372

16645

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

9.082

16646

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8.026

16647

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

75.966

16648

\[ {}\left [\begin {array}{c} x^{\prime }=6 \\ y^{\prime }=\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.230

16649

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=1 \end {array}\right ] \]

system_of_ODEs

0.424

16650

\[ {}\left [\begin {array}{c} x^{\prime }=0 \\ y^{\prime }=-2 y \end {array}\right ] \]

system_of_ODEs

0.344

16651

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2} \\ y^{\prime }={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.025

16652

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1} \\ x_{2}^{\prime }=1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.556

16653

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+1 \\ x_{2}^{\prime }=x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.633

16654

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+6 y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.417

16655

\[ {}\left [\begin {array}{c} x^{\prime }=8 x-y \\ y^{\prime }=x+6 y \end {array}\right ] \]

system_of_ODEs

0.378

16656

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.486

16657

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=-x+2 y \end {array}\right ] \]

system_of_ODEs

0.489

16658

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+1 \end {array}\right ] \]

system_of_ODEs

0.586

16659

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\sin \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

0.530

16660

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

2.354

16661

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

[[_2nd_order, _missing_x]]

1.181

16662

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.202

16663

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

2.069

16664

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

1.030

16665

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

3.474

16666

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

4.760

16667

\[ {}y^{\prime } = \sqrt {x -y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.752

16668

\[ {}y^{\prime } = \sqrt {x^{2}-y}-x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

4.941

16669

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

39.059

16670

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.105

16671

\[ {}y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

[‘y=_G(x,y’)‘]

2.749

16672

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

1.928

16673

\[ {}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.507

16674

\[ {}y^{\prime } = \sin \left (x y\right ) \]
i.c.

[‘y=_G(x,y’)‘]

1.434

16675

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

1.257

16676

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

1.243

16677

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = 2 x \]

[_separable]

1.573

16678

\[ {}y^{\prime } = x +1 \]

[_quadrature]

0.458

16679

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

1.192

16680

\[ {}y^{\prime } = y-x \]

[[_linear, ‘class A‘]]

1.191

16681

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

1.238

16682

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]

[_quadrature]

1.117

16683

\[ {}y^{\prime } = \left (-1+y\right ) x \]

[_separable]

1.418

16684

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

1.030

16685

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.559

16686

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

1.219

16687

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

1.247

16688

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

1.826

16689

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.508

16690

\[ {}y^{\prime } = 1-x \]

[_quadrature]

0.438

16691

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

1.225

16692

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

1.221

16693

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

2.123

16694

\[ {}y^{\prime } = 1 \]

[_quadrature]

0.735

16695

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.445

16696

\[ {}y^{\prime } = y \]

[_quadrature]

1.325

16697

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

1.270

16698

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

1.419

16699

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

15.283

16700

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

1.477