1.3.1 Miscellaneous PDE’s

Table 1.6: Miscellaneous PDE’s breakdown of results. Time in seconds

#

PDE

description

Mathematica
Maple

hand solved?

Animated?





result

time

result

time

1

General first order

Transport equation \(u_t+ u_x = 0\)

0.029

0.124

Yes

2

General first order

Transport equation \(u_t-3 u_x = 0\) IC \(u(0,x)=e^{-x^2}\). Peter Olver textbook, 2.2.2 (a)

0.005

0.059

Yes

Yes

3

General first order

Transport equation \(u_t+2 u_x = 0\) IC \(u(-1,x)=\frac {x}{1+x^2}\). Peter Olver textbook, 2.2.2 (b)

0.004

0.02

Yes

Yes

4

General first order

Transport equation \(u_t+u_x+\frac {1}{2}u = 0\) IC \(u(0,x)=\arctan (x)\). Peter Olver textbook, 2.2.2 (c)

0.003

0.052

Yes

Yes

5

General first order

Transport equation \(u_t-4u_x+u = 0\) IC \(u(0,x)=\frac {1}{1+x^2}\). Peter Olver textbook, 2.2.2 (d)

0.004

0.018

Yes

Yes

6

General first order

Transport equation \(u_t+2 u_x= \sin x\) IC \(u(0,x)=\sin x\). Peter Olver textbook, 2.2.5

0.05

0.105

Yes

Yes

7

General first order

Transport equation \(u_t+\frac {1}{1+x^2} u_x= 0\) IC \(u(x,0)=\frac {1}{1+(3+x)^2}\). Peter Olver textbook, page 27

0.014

0.182

Yes

Yes

8

General first order

Transport equation \(u_t-x u_x= 0\) IC \(u(x,0)=\frac {1}{1+x^2}\). Peter Olver textbook, problem 2.2.17

0.004

0.051

Yes

Yes

9

General first order

Transport equation \(u_t+(1-2 t) u_x= 0\) IC \(u(x,0)=\frac {1}{1+x^2}\). Peter Olver textbook, problem 2.2.29

0.018

0.076

Yes

Yes

10

General first order

Transport equation \(u_t+\frac {1}{x^2+4} u_x= 0\) IC \(u(x,0)=e^{x^3+12 x}\)

0.012

0.065

Yes

Yes

11

General first order

\(3 u_x + 5 u_y = x\)

0.004

0.009

Yes

12

General first order

\(x u_y + y u_x = -4 x y u\) and \(u(x,0)=e^{-x^2}\)

0.011

0.056

Yes

13

General first order

\(u_t + u_x = 0\) and \(u(x,0)=\sin x\) and \(u(0,t)=0\)

0.059

0.37

Yes

14

General first order

\(u_t+ c u_x = 0\) and \(u(x,0)=e^{-x^2}\)

0.003

0.02

Yes

15

General first order

(Haberman 12.2.2) \(\omega _t -3 \omega _x = 0\) and \(\omega (x,0)=\cos x\)

0.003

0.017

Yes

16

General first order

(Haberman 12.2.4) \(\omega _t +c \omega _x = 0\) and \(\omega (x,0)=f(x)\) and \(\omega (0,t)=h(t)\)

11.601


Solution contains unresolved invlaplace calls

0.405

Yes

17

General first order

(Haberman 12.2.5 (a)) \(\omega _t +c \omega _x = e^{2 x}\) and \(\omega (x,0)=f(x)\)

0.028

0.046

Yes

18

General first order

(Haberman 12.2.5 (d)) \(\omega _t +3 t \omega _x = \omega (x,t)\) and \(\omega (x,0)=f(x)\)

0.024

0.048

Yes

19

General first order

\( 2 u_x + 5 u_y = u^2(x,y) + 1\)

0.096

0.042

Yes

20

General first order

Clairaut equation \(x u_x + y u_y + \frac {1}{2} ( (u_x)^2+ (u_y)^2 ) = 0\)

0.025

0.321

Yes

21

General first order

Clairaut equation. \(x u_x + y u_y + \frac {1}{2} ( (u_x)^2+ (u_y)^2 ) = 0\) with \(u(x,0)= \frac {1}{2} (1-x^2)\)

0.009

0.682

22

General first order

Clairaut equation. \(u = x u_x+ y u_y + \sin ( u_x + u_y )\)

0.029

0.013

23

General first order

Recover a function from its gradient vector

0.022

0.061

24

General first order

\(x f_y - f_x = \frac {g(x)}{h(y)} f^2\)

0.057

0.039

Yes

25

General first order

\(f_x + (f_y)^2 = f(x,y,z)+z\)

0.164

0.462

26

General first order

\(x u_x+y u_y=u\) (Example 3.5.1 in Lokenath Debnath)

0.007

0.009

Yes

27

General first order

\(x u_x+y u_y=n u\) Example 3.5.2 in Lokenath Debnath

0.007

0.01

Yes

28

General first order

\(x^2 u_x+y^2 u_y=(x+y) u\) Example 3.5.3 in Lokenath Debnath

0.086

0.024

Yes

29

General first order

\((y-z) u_x + (z-x) u_y + (x-y) u_z = 0\) (Example 3.5.4 in Lokenath Debnath)

(Timed out)

600.

1.901

Yes

30

General first order

\(u(x+y) u_x+u(x-y) u_y=x^2+y^2\) (Example 3.5.5 in Lokenath Debnath)

0.356

0.284

Yes

31

General first order

\(u_x-u_y=1\) with \(u(x,0)=x^2\) Example 3.5.6 in Lokenath Debnath

0.003

0.018

32

General first order

\(y u_x+x u_y=u\) with \(u(x,0)=x^3\) and \(u(0,y)=y^3\) Example 3.5.8 in Lokenath Debnath

1.363

0.441

33

General first order

\(x u_x+y u_y=x e^{-u}\) with \(u=0\) on \(y=x^2\) Example 3.5.10 in Lokenath Debnath

0.093

0.057

34

General first order

\(u_t+u u_x=x\) with \(u(x,0)=f(x)\) Example 3.5.11 in Lokenath Debnath.

0.68

0.195

35

General first order

\(u_x=0\) Problem 3.3(a) Lokenath Debnath

0.003

0.002

36

General first order

\(a u_x+b u_y=0\) Problem 3.3(b) Lokenath Debnath

0.004

0.007

37

General first order

\(u_x+y u_y=0\) Problem 3.3(c) Lokenath Debnath

0.014

0.009

38

General first order

\((1+x^2) u_x+ u_y=0\) Problem 3.3(d) Lokenath Debnath

0.006

0.008

39

General first order

\(2 x y u_x+(x^2+y^2)u_y=0\) Problem 3.3(e) Lokenath Debnath

0.081

0.023

40

General first order

\((y+u) u_x+y u_y=x-y\) Problem 3.3(f) Lokenath Debnath

4.697

0.314

41

General first order

\(y^2 u_x- x y u_y=x(u-2 y)\) Problem 3.3(g) Lokenath Debnath

0.029

0.034

42

General first order

\(y u_y - x u_x = 1\) Problem 3.3(h) Lokenath Debnath

0.007

0.007

43

General first order

\(u_x+2 x y^2 u_y=0\) Problem 3.4 Lokenath Debnath

0.055

0.011

44

General first order

\(3 u_x+2 u_y=0\) with \(u(x,0)=\sin x\). Problem 3.5(a) Lokenath Debnath

0.003

0.014

45

General first order

\(y u_x+x u_y=0\) with \(u(0,y)=e^{-y^2}\). Problem 3.5(b) Lokenath Debnath

0.01

0.024

46

General first order

\(x u_x+y u_y=2 x y\) with \(u=2\) on \(y=x^2\). Problem 3.5(c) Lokenath Debnath

0.006

0.008

47

General first order

\(u_x+x u_y=0\) with \(u(0,y)=\sin y\). Problem 3.5(d) Lokenath Debnath

0.003

0.013

48

General first order

\(y u_x+x u_y=x y\) with \(u(0,y)=e^{-y^2},u(x,0)=e^{-x^2}\). Problem 3.5(e) Lokenath Debnath

1.149

0.406

49

General first order

\(u_x+x u_y=(y-\frac {1}{2}x^2)^2\) with \(u(0,y)=e^{y}\). Problem 3.5(f) Lokenath Debnath

0.005

0.083

50

General first order

\(x u_x+y u_y=u+1\) with \(u=x^2\) on \(y=x^2\) Problem 3.5(g) Lokenath Debnath

0.007

0.008

51

General first order

\(u u_x - u u_y= u^2 + (x+y)^2\) with \(u(x,0)=1\) Problem 3.5(h) Lokenath Debnath

0.041

0.061

52

General first order

\(x u_x+(x+y)u_y=u+1\) with \(u(x,0)=x^2\) Problem 3.5(i) Lokenath Debnath

0.011

0.047

53

General first order

\(x u_x+y u_y+z u_z=0\) Problem 3.8(a) .Lokenath Debnath

0.01

0.01

54

General first order

\(x^2 u_x+y^2 u_y+z(x+y)u_z=0\) Problem 3.8(b) Lokenath Debnath

0.059

0.017

55

General first order

\(x(y-z)u_x+y(z-x)u_y+z(x-y)u_z=0\) Problem 3.8(c) Lokenath Debnath

0.033

0.683

56

General first order

\(y z u_x - x z u_y+ x y (x^2+y^2) u_z=0\) Problem 3.8(d) Lokenath Debnath

0.071

0.038

57

General first order

\(x(y^2-z^2) u_x + y(z^2-y^2) u_y+ z (x^2-y^2) u_z=0\) Problem 3.8(e) Lokenath Debnath

45.674

0.214

58

General first order

\(u_x+x u_y=y\) with \(u(0,y)=y^2\) Problem 3.9(a) Lokenath Debnath

0.004

0.018

59

General first order

\(u_x+x u_y=y\) with \(u(1,y)=2 y\) Problem 3.9(b) Lokenath Debnath

0.004

0.007

60

General first order

\((u_x+u_y)^2-u^2=0\). Problem 3.10 Lokenath Debnath

0.007

0.018

61

General first order

\((y+u)u_x+y u_y=x-y\) with \(u(x,1)=1+x\). Problem 3.11 Lokenath Debnath

9.16

0.901

62

General first order

\(2 x u_x+(x+1) u_y=y\) with \(u(1,y)=2 y\). Problem 3.14(d) Lokenath Debnath

0.009

0.116

63

General first order

\(x u_x+y u_y=x^2+y^2\) with \(u(x,1)=x^2\). Problem 3.14(e) Lokenath Debnath

0.01

0.036

64

General first order

\(y^2 u_x+(x y) u_y=x\) with \(u(x,1)=x^2\). Problem 3.14(f) Lokenath Debnath

0.016

0.036

65

General first order

\(x u_x+y u_y=x y\) with \(u=\frac {x^2}{2}\) at \(y=x\). Problem 3.14(g) Lokenath Debnath

0.007

0.01

66

General first order

\(u_x+u u_y=1\) with \(u(0,y)=a y\). Problem 3.16(a) Lokenath Debnath

0.022

0.021

67

General first order

\((y+u)u_x+(x+u)u_y=x+y\). Problem 3.17(a) Lokenath Debnath

30.979

1.295

68

General first order

\(x u(u^2+x y)u_x - y u(u^2+x y) u_y = x^4\). Problem 3.17(b) Lokenath Debnath

0.033

0.04

69

General first order

\((x+y) u_x + (x-y)u_y =0\). Problem 3.17(c) Lokenath Debnath

0.032

0.044

70

General first order

\(y u_x - x u_y = e^u\) with \(u(0,y)=y^2-1\)

0.103

0.089

Yes

71

General first order

\(y u_x - x u_y = e^u\)

0.053

0.001

Yes

72

General first order

\(u_t + x u_x = 0\) with \(u(x,0)=x^2\). Math 5587

0.006

0.02

Yes

73

General first order

\(u_t + t u_x = 0\) with \(u(x,0)=e^x\)

0.009

0.028

Yes

74

General first order

\(2 u_x + 3 u_y = 1\)

0.004

0.008

Yes

75

General first order

\(x u_t - t u_x = 0\)

0.01

0.01

Yes

76

General first order

\(u_t + u_x = 0\) with \(u(x,1)=\frac {x}{1+x^2}\)

0.004

0.009

Yes

77

General first order

\(u_x u_y = 1\)

0.002

0.015

Yes

78

General first order

\(u_x u_y = u\) with \(u(x,0)=0,u(0,y)=0\)

1.108

0.23

Yes

79

Solved by factoring into two transport equations

\(u_{xx} + u_{xt} - 6 u_{tt} = 0\)

0.009

0.081

Yes

80

Solved by factoring into two transport equations

\(u_{xx} - u_{xt} - 12 u_{tt} = 0\)

0.009

0.245

Yes

81

Solved by factoring into two transport equations

\(u_{xx} - 3 u_{xt} - 4 u_{tt} = 0\)

0.009

1.926

Yes

82

Solved by factoring into two transport equations

\(u_{tt} - 2 u_{xt} - 3 u_{xx} = 0\) with \(u(0,x)=x^2, u_t(x,0)=e^x\)

0.013

1.645

83

Schrodinger PDE

pict

Logan textbook, page 30

0.391

0.393

84

Schrodinger PDE

pict

In a square, zero potential

0.852

3.302

85

Schrodinger PDE

pict

From Mathematica help pages

0.627

0.786

86

Schrodinger PDE

pict

From Mathematica help pages

0.005


Trivial solution. Maple does not support \(\infty \) in boundary conditions

9.647

87

Schrodinger PDE

pict

David Griffiths, page 47

37.402

1.725

88

Schrodinger PDE

pict

David Griffiths, page 47

0.565

0.913

89

Schrodinger PDE

pict

In a square

0.567

4.639

90

Beam PDE

Beam PDE \(u_{tt} + u_{xxxx} = 0\)

0.212

0.235

91

Burger’s PDE

Inviscid Burgers \(u_x + u u_y = 0\)


Implicit solution

0.026

0.025

Yes

92

Burger’s PDE

Inviscid Burgers with I.C. \(u_x+ u u_y = 0\) and \(u(x,0)=\frac {1}{x+1}\)

0.008

0.064

Yes

93

Burger’s PDE

\(u_t+ u u_x = \mu u_{xx}\)

0.03

0.077

94

Burger’s PDE

\(u_t + u u_x + \mu u_{xx}\) with IC

9.03

0.661

95

Burger’s PDE

\(u_t + u u_x + \mu u_{xx}\) IC as UnitBox

36.079

0.727

96

Black Scholes PDE

classic Black Scholes model from finance, European call version

2.444

1.223

97

Black Scholes PDE

Boundary value problem for the Black Scholes equation

3.581

2.214

98

Korteweg-deVries PDE

\(u_{xxx} + u_t -6 u u_x = 0\)

0.03

0.191

99

Tricomi PDE

\(u_{xx} + y u_{yy} = 0\) with \(u(x,0)=0,u_y(x,0)=x^2\)

8.831

3.635

100

Tricomi PDE

\(u_{xx} + x u_{yy} = 0\)

0.01

1.559

101

Keldysh equation

\(x u_{xx} + u_{yy} = 0\)

0.007

1.803

102

Euler-Poisson-Darboux equation

\(u_{xx} + u_{yy} + \frac {\beta }{x} u_x = 0\)

0.01

0.091

103

Euler-Poisson-Darboux equation

\(u_{xx} - u_{yy} + \frac {\beta }{x} u_x = 0\)

0.009

0.424

104

Euler-Poisson-Darboux equation

\(u_{tt} - u_{xx} - \frac {2}{x} u_x = 0\) with \(u(x,0)=0,u_t(x,0)=g(x)\)

1.838

4.568

105

Chaplygin’s equation

\(u_{\theta \theta }+\frac {v^2}{1-\frac {v^2}{c^2}} u_{vv} + v u_v=0\)

0.028

1.144

106

Cauchy Riemann PDE’s

Cauchy Riemann PDE with Prescribe the values of \(u\) and \(v\) on the \(x\) axis

0.009

0.168

107

Cauchy Riemann PDE’s

Cauchy Riemann PDE With extra term on right side

0.001

0.057

108

Hamilton-Jacobi PDE

Hamilton-Jacobi type PDE

0.007

0.186

109

Airy PDE

\(u_t + u_{xxx} = 0\)

0.027

0.078

Yes

110

Nonlinear PDE’s

Bateman-Burgers \(u_t+u u_x = \nu u_{xx}\)

0.022

0.069

111

Nonlinear PDE’s

Benjamin Bona Mahony \(u_t+u_x + u u+x - u_{xxt} = 0\)

0.031

0.085

112

Nonlinear PDE’s

Benjamin Ono \(u_t+H u_{xx} +u u_x = 0\)

0.022

0.071

113

Nonlinear PDE’s

Born Infeld \((1-u_t^2) u_{xx} + 2 u_x u_t u_{xt} - (1+ u_x^2) u_{tt}=0\)

0.011

0.15

114

Nonlinear PDE’s

Boussinesq \(u_{tt}-u_{xx}-u_{xxxx} - 3 (u^2)_{xx} = 0\)

0.041

0.101

115

Nonlinear PDE’s

Boussinesq type \(u_{tt}-u_{xx}-2 \alpha (u u_x)_x - \beta u_{xxtt} = 0\)

0.041

0.116

116

Nonlinear PDE’s

Buckmaster \( u_t = (u^4)_{xx} + (u^3)_x\)

0.073


Answer in terms of RootOf.

0.648

117

Nonlinear PDE’s

Camassa Holm \(u_t + 2 k u_x - u_{xxt} + 3 u u_x = 2 u_x u_{xx}+ u u_{xxx}\)

0.182


Answer in terms of RootOf.

1.383

118

Nonlinear PDE’s

Chaffee Infante \(u_t = u_{xx} + \lambda (u^3 - u) = 0\)

0.096

0.197

119

Nonlinear PDE’s

Clarke. \(\left ( \theta _t - \gamma e^\theta \right )_{tt} = \left ( \theta _t - e^\theta \right )_{xx}\)

0.011

0.028

120

Nonlinear PDE’s

Degasperis Procesi \(u_t - u_{xxt} + 4 u u_x = 3 u_x u_xx + u u_{xxx}\)

0.177


But still has unresolved ODE’s in solution

0.516

121

Nonlinear PDE’s

Dym equation \(u_t =u^3 u_{xxx}\)

0.085


has RootOf

0.426

122

Nonlinear PDE’s

Estevez Mansfield Clarkson \(u_{tyyy} + \beta u_y u_{yt} + \beta u_{yy} u_t + u_{tt} = 0\)

0.032

0.139

123

Nonlinear PDE’s

Fisher’s \(u_t = u(1-u)+u_{xx}\)

0.052

0.186

124

Nonlinear PDE’s

Hunter Saxton \(\left ( u_t + u u_x) \right )_x = \frac {1}{2} (u_x)^2\)

0.044


with RootOf

0.115

125

Nonlinear PDE’s

Kadomtsev Petviashvili \( \left ( u_t + u u_x + \epsilon ^2 u_{xxx} \right )_x + \lambda u_{yy} = 0 \)

0.068

0.14

126

Nonlinear PDE’s

Klein Gordon \(u_{xx}+u_{yy}+ \lambda u^p=0\)

0.009

0.021

127

Nonlinear PDE’s

Klein Gordon \(u_{xx}+u_{yy}+ u^2=0\)

0.221

0.409

128

Nonlinear PDE’s

Khokhlov Zabolotskaya \(u_{x t} - (u u_x)_x = u_{yy}\)

0.067

0.276

129

Nonlinear PDE’s

Korteweg de Vries (KdV) \(u_t + (u_x)^3+ 6 u u_x = 0\)

0.028

0.102

130

Nonlinear PDE’s

Lin Tsien \(2 u_{tx} + u_x u_{xx} - u_{yy} = 0\)

0.083

0.283

131

Nonlinear PDE’s

Liouville \(u_{xx} + u_{yy} +e^{\lambda u} = 0\)

0.008

0.319

132

Nonlinear PDE’s

Plateau \((1+u_y^2)u_{xx} - 2 u_x u_y y_{xy} + (1+u_x^2) u_{yy} = 0\)

0.035

0.153

133

Nonlinear PDE’s

Rayleigh \(u_{tt} - u_{xx} = \epsilon (u_t - u_t^3)\)

0.08


Has RootOf

0.158

134

Nonlinear PDE’s

Sawada Kotera \(u_t + 45 u^2 u_x + 15 u_x u_{xx} + 15 u u_{xxx} + u_{xxxxx} = 0 \)

0.085

0.14

135

Nonlinear PDE’s

Sine Gordon \(\phi _{tt} - \phi _{xx} + \sin \phi = 0\)

0.01

0.014

136

Nonlinear PDE’s

Sinh Gordon \( u_{xt} = \sinh u\)

0.009

0.014

137

Nonlinear PDE’s

Sinh Poisson \(u_{xx}+u_{yy} + \sinh u=0\)

0.009

0.012

138

Nonlinear PDE’s

Thomas equation \( u_{xy} + \alpha u_x + \beta u_y+ \nu u_x u_y =0\)

0.066

0.427

139

Nonlinear PDE’s

phi equation \(\phi _{tt} - \phi _{xx} - \phi + \phi ^3 = 0\)

0.044

0.118

140

more miscellaneous

\(S S_{xy} + S_x S_y = 1\)

0.033

0.038

141

more miscellaneous

\(u_{rr} + u_{\theta \theta } = 0\)

26.96

0.707

142

more miscellaneous

\( u_{xx} + y u_{yy} = 0\)

7.356

3.055

143

more miscellaneous

\(u_t + u_{xxx} = 0\)

1.27

16.98

144

more miscellaneous

\(u_{xy} = \sin (x) \sin (y) \)

0.224

0.569

145

more miscellaneous

\(w_t = w_{x_1 x_1} + w_{x_2 x_2} + w_{x_3 x_3}\)

2.618

0.735

146

more miscellaneous

Linear PDE, initial conditions at \(t=t_0\)

2.998

0.744

147

more miscellaneous

second order in time, Linear PDE, initial conditions at \(t=t_0\)

1.94

2.332

148

more miscellaneous

Einstein-Weiner \(u_t = -\beta u_x + D u_{xx}\)

0.02

0.319

149

more miscellaneous

Using integral transforms.

1.022

2.997