Added June 3, 2019.
Problem 3.9(b) nonlinear pde’s by Lokenath Debnath, 3rd edition.
Solve for \(u(x,y)\) \[ u_x+x u_y=y \] With \(u(1,y)=2 y\).
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, y], x] +x*D[u[x, y], y]== y; ic = u[1,y]==2*y; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde,ic} ,u[x, y], {x, y}], 60*10]];
\[\left \{\left \{u(x,y)\to -\frac {x^3}{3}-\frac {x^2}{2}+x y+y+\frac {5}{6}\right \}\right \}\]
Maple ✓
restart; pde := diff(u(x,y),x) + x*diff(u(x,y),y)= y; ic := u(1,y)=2*y; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,y))),output='realtime'));
\[u \left ( x,y \right ) =-{\frac {{x}^{3}}{3}}+yx+{\frac {5}{6}}-{\frac {{x}^{2}}{2}}+y\]
____________________________________________________________________________________