2.3.6 David Griffiths, page 47

problem number 88

Taken from Introduction to Quantum mechanics, second edition, by David Griffiths, page 47. This is the same as the above problem but has an extra V(x)f(x,t) terms where V(x) is the infinite square well potential defined by V(x)=0 if 0xa and V(x)= otherwise.

Solve for f(x,t) Ift=22mfxx+V(x)f(x,t) With initial conditions f(x,0)=Ax(ax) for 0xa and zero otherwise.

Mathematica

ClearAll["Global`*"]; 
ic  = f[x, y, 0] == Sqrt[2]*(Sin[2*Pi*x]*Sin[Pi*y] + Sin[Pi*x]*Sin[3*Pi*y]); 
bc  = {f[0, y, t] == 0, f[1, y, t] == 0, f[x, 1, t] == 0, f[x, 0, t] == 0}; 
pde =  I*h*D[f[x, y, t], t] == -((h^2*(D[f[x, y, t], {x, 2}] + D[f[x, y, t], {y, 2}]))/(2*m)); 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, f[x, y, t], {x, y, t}], 60*10]];
 

{{f(x,y,t)2e5iπ2htm(sin(πx)sin(3πy)+sin(2πx)sin(πy)e5iπ2ht2m)}}

Maple

restart; 
V:=x->piecewise(0<=x and x<=a,0,infinity); 
ic:=f(x,0)=piecewise(0<=x and x<=a,A*x*(a-x),0); 
pde :=I*h*diff(f(x,t),t)=-h^2/(2*m)*diff(f(x,t),x$2) +V(x)*f(x,t); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],f(x,t)) assuming a>0),output='realtime'));
 

f(x,t)={Ax(ax)0xxa0otherwise+n=1tn(Ui{00xxaotherwiseUh(n))({Ax(ax)0xxa0otherwise)n!

____________________________________________________________________________________