Taken from Introduction to Quantum mechanics, second edition, by David Griffiths, page 47.
This is the same as the above problem but has an extra
Solve for
Mathematica ✓
ClearAll["Global`*"]; ic = f[x, y, 0] == Sqrt[2]*(Sin[2*Pi*x]*Sin[Pi*y] + Sin[Pi*x]*Sin[3*Pi*y]); bc = {f[0, y, t] == 0, f[1, y, t] == 0, f[x, 1, t] == 0, f[x, 0, t] == 0}; pde = I*h*D[f[x, y, t], t] == -((h^2*(D[f[x, y, t], {x, 2}] + D[f[x, y, t], {y, 2}]))/(2*m)); sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, f[x, y, t], {x, y, t}], 60*10]];
Maple ✓
restart; V:=x->piecewise(0<=x and x<=a,0,infinity); ic:=f(x,0)=piecewise(0<=x and x<=a,A*x*(a-x),0); pde :=I*h*diff(f(x,t),t)=-h^2/(2*m)*diff(f(x,t),x$2) +V(x)*f(x,t); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],f(x,t)) assuming a>0),output='realtime'));
____________________________________________________________________________________