131 HFOPDE, chapter 5.4.1

131.1 Problem 1
131.2 Problem 2
131.3 Problem 3
131.4 Problem 4
131.5 Problem 5

____________________________________________________________________________________

131.1 Problem 1

problem number 1058

Added April 3, 2019.

Problem Chapter 5.4.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c w + \sinh ^k(\lambda x) \sinh ^n(\beta y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x,y]+Sinh[lambda*x]^k*Sinh[beta*y]^n; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y)\to e^{\frac {c x}{a}} \left (\int _1^x \frac {e^{-\frac {c K[1]}{a}} \sinh ^k(\lambda K[1]) \sinh ^n\left (\beta \left (\frac {b (K[1]-x)}{a}+y\right )\right )}{a} \, dK[1]+c_1\left (y-\frac {b x}{a}\right )\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*w(x,y)+sinh(lambda*x)^k*sinh(beta*y)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) ={{\rm e}^{{\frac {cx}{a}}}} \left ( {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) +\int ^{x}\!{\frac { \left ( \sinh \left ( \lambda \,{\it \_a} \right ) \right ) ^{k}}{a} \left ( \sinh \left ( {\frac {\beta \, \left ( ya-b \left ( x-{\it \_a} \right ) \right ) }{a}} \right ) \right ) ^{n}{{\rm e}^{-{\frac {{\it \_a}\,c}{a}}}}}{d{\it \_a}} \right ) \]

____________________________________________________________________________________

131.2 Problem 2

problem number 1059

Added April 3, 2019.

Problem Chapter 5.4.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \sinh ^k(\lambda x) w + s \sinh ^n(\beta x) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sinh[lambda*x]^k*w[x,y]+ s*Sinh[beta*x]^n; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*sinh(lambda*x)^k*w(x,y)+s*sinh(beta*x)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) ={{\rm e}^{\int \!{\frac { \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{k}c}{a}}\,{\rm d}x}} \left ( {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) +\int \!{\frac {s \left ( \sinh \left ( \beta \,x \right ) \right ) ^{n}}{a}{{\rm e}^{-{\frac {c\int \! \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x}{a}}}}}\,{\rm d}x \right ) \]

____________________________________________________________________________________

131.3 Problem 3

problem number 1060

Added April 3, 2019.

Problem Chapter 5.4.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = \left (c_1 \sinh ^{n_1}(\lambda _1 x)+ c_2 \sinh ^{n_2}(\lambda _2 y) \right ) w + s_1 \sinh ^{k_1}(\beta _1 x)+ s_2 \sinh ^{k_2}(\beta _2 y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c1*Sinh[lambda1*x]^n1 + c2*Sinh[lambda2*y]^n2)*w[x,y] + s1*Sinh[beta1*x]^k1+ s2*Sinh[beta2*y]^k2; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c1*sinh(lambda1*x)^n1 + c2*sinh(lambda2*y)^n2)*w(x,y) + s1*sinh(beta1*x)^k1+ s2*sinh(beta2*y)^k2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) ={{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( {\it c1}\, \left ( \sinh \left ( \lambda 1\,{\it \_a} \right ) \right ) ^{{\it n1}}+ \left ( \sinh \left ( {\frac {\lambda 2\, \left ( ya-b \left ( x-{\it \_a} \right ) \right ) }{a}} \right ) \right ) ^{{\it n2}}{\it c2} \right ) }{d{\it \_a}}}} \left ( {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) +\int ^{x}\!{\frac {1}{a}{{\rm e}^{{\frac {1}{a} \left ( -{\it c1}\,\int \! \left ( \sinh \left ( \lambda 1\,{\it \_f} \right ) \right ) ^{{\it n1}}\,{\rm d}{\it \_f}-{\it c2}\,\int \! \left ( \sinh \left ( {\frac {\lambda 2\, \left ( ya-b \left ( x-{\it \_f} \right ) \right ) }{a}} \right ) \right ) ^{{\it n2}}\,{\rm d}{\it \_f} \right ) }}} \left ( {\it s1}\, \left ( \sinh \left ( \beta 1\,{\it \_f} \right ) \right ) ^{{\it k1}}+{\it s2}\, \left ( \sinh \left ( {\frac {\beta 2\, \left ( ya-b \left ( x-{\it \_f} \right ) \right ) }{a}} \right ) \right ) ^{{\it k2}} \right ) }{d{\it \_f}} \right ) \]

____________________________________________________________________________________

131.4 Problem 4

problem number 1061

Added April 3, 2019.

Problem Chapter 5.4.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a \sinh ^n(\lambda x) w_x + b \sinh ^m(\mu x) w_y = c \sinh ^k(\nu x) w + p \sinh ^s(\beta y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Sinh[lambda*x]^n*D[w[x, y], x] + b*Sinh[mu*x]^m*D[w[x, y], y] == c*Sinh[nu*x]*w[x,y]+p*Sinh[beta*y]^s; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2'); 
pde :=  a*sinh(lambda*x)^n*diff(w(x,y),x)+ b*sinh(mu*x)^m*diff(w(x,y),y) = c*sinh(nu*x)*w[x,y]+p*sinh(beta*y)^s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) =\int ^{x}\!{\frac { \left ( \sinh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{a} \left ( c\sinh \left ( \nu \,{\it \_b} \right ) w_{{x,y}}+ \left ( \sinh \left ( {\frac {\beta \, \left ( b\int \! \left ( \sinh \left ( {\it \_b}\,\mu \right ) \right ) ^{m} \left ( \sinh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}\,{\rm d}{\it \_b}+ya-b\int \! \left ( \sinh \left ( \mu \,x \right ) \right ) ^{m} \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x \right ) }{a}} \right ) \right ) ^{s}p \right ) }{d{\it \_b}}+{\it \_F1} \left ( {\frac {ya-b\int \! \left ( \sinh \left ( \mu \,x \right ) \right ) ^{m} \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x}{a}} \right ) \]

____________________________________________________________________________________

131.5 Problem 5

problem number 1062

Added April 3, 2019.

Problem Chapter 5.4.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a \sinh ^n(\lambda x) w_x + b \sinh ^m(\mu x) w_y = c \sinh ^k(\nu y) w + p \sinh ^s(\beta x) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Sinh[lambda*x]^n*D[w[x, y], x] + b*Sinh[mu*x]^m*D[w[x, y], y] == c*Sinh[nu*y]*w[x,y]+p*Sinh[beta*x]^s; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2'); 
pde :=  a*sinh(lambda*x)^n*diff(w(x,y),x)+ b*sinh(mu*x)^m*diff(w(x,y),y) = c*sinh(nu*y)*w[x,y]+p*sinh(beta*x)^s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) =\int ^{x}\!{\frac { \left ( \sinh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{a} \left ( w_{{x,y}}c\sinh \left ( {\frac {\nu \, \left ( b\int \! \left ( \sinh \left ( {\it \_b}\,\mu \right ) \right ) ^{m} \left ( \sinh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}\,{\rm d}{\it \_b}+ya-b\int \! \left ( \sinh \left ( \mu \,x \right ) \right ) ^{m} \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x \right ) }{a}} \right ) +p \left ( \sinh \left ( \beta \,{\it \_b} \right ) \right ) ^{s} \right ) }{d{\it \_b}}+{\it \_F1} \left ( {\frac {ya-b\int \! \left ( \sinh \left ( \mu \,x \right ) \right ) ^{m} \left ( \sinh \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x}{a}} \right ) \]