130 HFOPDE, chapter 5.3.2

130.1 Problem 1
130.2 Problem 2
130.3 Problem 3
130.4 Problem 4
130.5 Problem 5
130.6 Problem 6
130.7 Problem 7
130.8 Problem 8
130.9 Problem 9
130.10 Problem 10

____________________________________________________________________________________

130.1 Problem 1

problem number 1048

Added April 2, 2019.

Problem Chapter 5.3.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(aeλxy+bxn)wy=cw+keγx

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y+b*x^n)*D[w[x, y], y] == c*w[x,y]+k*Exp[gamma*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

$Aborted

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  diff(w(x,y),x)+ (a*exp(lambda*x)*y+b*x^n)*diff(w(x,y),y) = c*w(x,y)+k*exp(gamma*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=(kex(γc)γc+_F1(bxneaeλxλdx+yeaeλxλ))ecx

____________________________________________________________________________________

130.2 Problem 2

problem number 1049

Added April 2, 2019.

Problem Chapter 5.3.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(aeλxy+beβx)wy=cw+keγx

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y+b*Exp[beta*x])*D[w[x, y], y] == c*w[x,y]+k*Exp[gamma*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)ecx(c1(yeaeλxλ1xbeβK[1]aeλK[1]λdK[1])kex(γc)cγ)}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  diff(w(x,y),x)+ (a*exp(lambda*x)*y+b*exp(beta*x))*diff(w(x,y),y) = c*w(x,y)+k*exp(gamma*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=ecxγ+c((γc)_F1(beβxλaeλxλdx+yeaeλxλ)+kex(γc))

____________________________________________________________________________________

130.3 Problem 3

problem number 1050

Added April 2, 2019.

Problem Chapter 5.3.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(aeλxy+beβx)wy=cw+kxn

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*x]*y+b*Exp[beta*x])*D[w[x, y], y] == c*w[x,y]+k*x^n; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)ecx(c1(yeaeλxλ1xbeβK[1]aeλK[1]λdK[1])kxn(cx)nGamma(n+1,cx)c)}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  diff(w(x,y),x)+ (a*exp(lambda*x)*y+b*exp(beta*x))*diff(w(x,y),y) = c*w(x,y)+k*x^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=ecxc(n+1)(c(n+1)_F1(beβxλaeλxλdx+yeaeλxλ)+kxn(cx)n/2e1/2cxWhittakerM(n/2,n/2+1/2,cx))

____________________________________________________________________________________

130.4 Problem 4

problem number 1051

Added April 2, 2019.

Problem Chapter 5.3.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(aeλy+bxk)wy=cw+keγx

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = D[w[x, y], x] + (a*Exp[lambda*y]+b*x^k)*D[w[x, y], y] == c*w[x,y]+k*Exp[gamma*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)ecx(c1(aλx(bλxk+1k+1)1k+1Gamma(1k+1,bλxk+1k+1)(k+1)eλ(bxk+1+ky+y)k+1abk(k+1)λ2)kex(γc)cγ)}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  diff(w(x,y),x)+ (a*exp(lambda*y)+b*x^k)*diff(w(x,y),y) = c*w(x,y)+k*exp(gamma*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=ecxγ+c((γc)_F1(1λb(2k2+7k+6)(a(xk+1λbk+1)k22k+2xkexk+1λb2k+2(k+1)(k+2)2WhittakerM(k+22k+2,2k+32k+2,xk+1λbk+1)a(xk+1λbk+1)k22k+2((k2)xk+bxλ)(k+1)2exk+1λb2k+2WhittakerM(k2k+2,2k+32k+2,xk+1λbk+1)2e(xk+1by(k+1))λk+1(3/2+k)b(k+2)))+kex(γc))

____________________________________________________________________________________

130.5 Problem 5

problem number 1052

Added April 2, 2019.

Problem Chapter 5.3.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

xwx+ywy=axeλx+μyw+beνx

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Exp[lambda*x+mu*y]*w[x,y]+b*Exp[nu*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)eaxeλx+μyλx+μy(1xbexp(νK[1]axeK[1](λ+μyx)λx+μy)K[1]dK[1]+c1(yx))}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  x* diff(w(x,y),x)+ y*diff(w(x,y),y) =  a*x*exp(lambda*x+mu*y)*w(x,y)+k*exp(nu*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=(xk_ae1λx+μy(axeμy_ax+λ_aν_a(λx+μy))d_a+_F1(yx))eaeλx+μy(μyx+λ)1

____________________________________________________________________________________

130.6 Problem 6

problem number 1053

Added April 2, 2019.

Problem Chapter 5.3.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

xwx+ywy=(ayeλx+bxeμy)w+ceνx

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = x*D[w[x, y], x] + y*D[w[x, y], y] == (a*y*Exp[lambda*x]+b*x*Exp[mu*y])*w[x,y]+c*Exp[nu*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)eayeλxλx+bxeμyμy(1xcexp(ayeλK[1]λxbxeμyK[1]xμy+νK[1])K[1]dK[1]+c1(yx))}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  x* diff(w(x,y),x)+ y*diff(w(x,y),y) = (a*y*exp(lambda*x)+b*x*exp(mu*y))*w(x,y)+c*exp(nu*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=(xc_aexλμy(eλ_ay2aμx2ν_aμyλx+eμy_axbλ)d_a+_F1(yx))exλμy(aeλxy2μx2+eμybλ)

____________________________________________________________________________________

130.7 Problem 7

problem number 1054

Added April 2, 2019.

Problem Chapter 5.3.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

aykwx+beλxwy=w+ceβx

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*y^k*D[w[x, y], x] + b*Exp[lambda*x]*D[w[x, y], y] == w[x,y]+c*Exp[beta*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)exp((k+1)((yk+1)1k+1)k(aλyk+1eλxbk+b)kk+1Hypergeometric2F1(kk+1,kk+1,kk+1+1,1aλyk+1eλxbk+b)akλ)(1xc((yk+1b(k+1)(eλxeλK[1])aλ)1k+1)kexp((k+1)(aλyk+1eλK[1]bk+beλ(xK[1])+1)kk+1((yk+1b(k+1)(eλxeλK[1])aλ)1k+1)kHypergeometric2F1(kk+1,kk+1,kk+1+1,eλK[1](b(k+1)eλxaλyk+1)b(k+1))akλ+βK[1])adK[1]+c1(yk+1k+1beλxaλ))}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  a*y^k* diff(w(x,y),x)+ b*exp(lambda*x)*diff(w(x,y),y) = w(x,y)+c*exp(beta*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=(xca((b(k+1)e_bλeλxb(k+1)+ykyaλaλ)(k+1)1)ke1a(_baβ((b(k+1)e_bλeλxb(k+1)+ykyaλaλ)(k+1)1)kd_b)d_b+_F1(eλxb(k+1)+ykyaλaλ))ex1a((b(k+1)eλ_aeλxb(k+1)+ykyaλaλ)(k+1)1)kd_a

____________________________________________________________________________________

130.8 Problem 8

problem number 1055

Added April 2, 2019.

Problem Chapter 5.3.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

aeλxwx+bywy=w+ceλx

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Exp[lambda*x]*D[w[x, y], x] + b*y*D[w[x, y], y] == w[x,y]+c*Exp[lambda*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)eeλxaλ(aλc1(yebeλxaλ)cExpIntegralEi(eλxaλ))aλ}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  a*exp(lambda*x)* diff(w(x,y),x)+ b*y*diff(w(x,y),y) = w(x,y)+c*exp(lambda*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=1aλ(_F1(yebeλxaλ)aλ+cexpIntegral(1,eλxaλ))eeλxaλ

____________________________________________________________________________________

130.9 Problem 9

problem number 1056

Added April 2, 2019.

Problem Chapter 5.3.2.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

aeλywx+bxkwy=w+ceβx

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Exp[lambda*y]*D[w[x, y], x] + b*x^k*D[w[x, y], y] == w[x,y]+c*Exp[beta*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)exp((k+1)xHypergeometric2F1(1,1k+1,1k+1+1,bλxk+1bλxk+1a(k+1)eλy)a(k+1)eλybλxk+1)(1xc(k+1)exp(K[1]((k+1)Hypergeometric2F1(1,1k+1,1k+1+1,bλK[1]k+1bλxk+1a(k+1)eλy)+aβ(k+1)eλybβλxk+1)a(k+1)eλybλxk+1)bλ(K[1]k+1xk+1)+a(k+1)eλydK[1]+c1(eλyλbxk+1ak+a))}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  a*exp(lambda*y)* diff(w(x,y),x)+ b*x^k*diff(w(x,y),y) = w(x,y)+c*exp(beta*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=(xc(k+1)xk+1λb+_bk+1λb+eyλa(k+1)e1λb((1k)λbxk+1λb+_bk+1λb+eyλa(k+1)d_b+b_bλβ)d_b+_F1(xk+1λb+eyλa(k+1)(k+1)λb))exk+1xk+1λb+_ak+1λb+eyλa(k+1)d_a

____________________________________________________________________________________

130.10 Problem 10

problem number 1057

Added April 2, 2019.

Problem Chapter 5.3.2.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

aeλywx+beβxwy=w+cxk

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Exp[lambda*y]*D[w[x, y], x] + b*Exp[beta*x]*D[w[x, y], y] == w[x,y]+c*x^k; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

{{w(x,y)exp(βxlog(aβeλyλ)aβeλybλeβx)(1xβcK[1]kexp(log(b(eβK[1]eβx)+aβeλyλ)βK[1]aβeλybλeβx)bλ(eβK[1]eβx)+aβeλydK[1]+c1(eλyλbeβxaβ))}}

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  a*exp(lambda*y)* diff(w(x,y),x)+ b*exp(beta*x)*diff(w(x,y),y) = w(x,y)+c*x^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

w(x,y)=(xc_akβλb(eyλaβeβxbλλb+eβ_a)eyλaβ+eβxbλ+1eyλaβeβxbλ(eβ_a)(eyλaβeβxbλ)1d_a+_F1(eyλaβeβxbλbβλ))(eyλaβλb)(eyλaβeβxbλ)1(eβx)(eyλaβeβxbλ)1