132 HFOPDE, chapter 5.4.2

132.1 Problem 1
132.2 Problem 2
132.3 Problem 3
132.4 Problem 4
132.5 Problem 5
132.6 Problem 6

____________________________________________________________________________________

132.1 Problem 1

problem number 1063

Added April 3, 2019.

Problem Chapter 5.4.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c w + \cosh ^k(\lambda x) \cosh ^n(\beta y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x,y]+Cosh[lambda*x]^k*Cosh[beta*y]^n; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y)\to e^{\frac {c x}{a}} \left (\int _1^x \frac {e^{-\frac {c K[1]}{a}} \cosh ^k(\lambda K[1]) \cosh ^n\left (\beta \left (\frac {b (K[1]-x)}{a}+y\right )\right )}{a} \, dK[1]+c_1\left (y-\frac {b x}{a}\right )\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*w(x,y)+cosh(lambda*x)^k*cosh(beta*y)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) ={{\rm e}^{{\frac {cx}{a}}}} \left ( \int ^{x}\!{\frac { \left ( \cosh \left ( \lambda \,{\it \_a} \right ) \right ) ^{k}}{a} \left ( \cosh \left ( {\frac {\beta \, \left ( ya-b \left ( x-{\it \_a} \right ) \right ) }{a}} \right ) \right ) ^{n}{{\rm e}^{-{\frac {{\it \_a}\,c}{a}}}}}{d{\it \_a}}+{\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) \right ) \]

____________________________________________________________________________________

132.2 Problem 2

problem number 1064

Added April 3, 2019.

Problem Chapter 5.4.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \cosh ^k(\lambda x) w + s \cosh ^n(\beta x) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Cosh[lambda*x]^k*w[x,y]+ s*Cosh[beta*x]^n; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*cosh(lambda*x)^k*w(x,y)+s*cosh(beta*x)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) ={{\rm e}^{\int \!{\frac { \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{k}c}{a}}\,{\rm d}x}} \left ( {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) +\int \!{\frac {s \left ( \cosh \left ( \beta \,x \right ) \right ) ^{n}}{a}{{\rm e}^{-{\frac {c\int \! \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{k}\,{\rm d}x}{a}}}}}\,{\rm d}x \right ) \]

____________________________________________________________________________________

132.3 Problem 3

problem number 1065

Added April 3, 2019.

Problem Chapter 5.4.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = \left (c_1 \cosh ^{n_1}(\lambda _1 x)+ c_2 \cosh ^{n_2}(\lambda _2 y) \right ) w + s_1 \cosh ^{k_1}(\beta _1 x)+ s_2 \cosh ^{k_2}(\beta _2 y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c1*Cosh[lambda1*x]^n1 + c2*Cosh[lambda2*y]^n2)*w[x,y] + s1*Cosh[beta1*x]^k1+ s2*Cosh[beta2*y]^k2; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2'); 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c1*cosh(lambda1*x)^n1 + c2*cosh(lambda2*y)^n2)*w(x,y) + s1*cosh(beta1*x)^k1+ s2*cosh(beta2*y)^k2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) ={{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( {\it c1}\, \left ( \cosh \left ( \lambda 1\,{\it \_a} \right ) \right ) ^{{\it n1}}+ \left ( \cosh \left ( {\frac {\lambda 2\, \left ( ya-b \left ( x-{\it \_a} \right ) \right ) }{a}} \right ) \right ) ^{{\it n2}}{\it c2} \right ) }{d{\it \_a}}}} \left ( {\it \_F1} \left ( {\frac {ya-bx}{a}} \right ) +\int ^{x}\!{\frac {1}{a}{{\rm e}^{{\frac {1}{a} \left ( -{\it c1}\,\int \! \left ( \cosh \left ( \lambda 1\,{\it \_f} \right ) \right ) ^{{\it n1}}\,{\rm d}{\it \_f}-{\it c2}\,\int \! \left ( \cosh \left ( {\frac {\lambda 2\, \left ( ya-b \left ( x-{\it \_f} \right ) \right ) }{a}} \right ) \right ) ^{{\it n2}}\,{\rm d}{\it \_f} \right ) }}} \left ( {\it s1}\, \left ( \cosh \left ( \beta 1\,{\it \_f} \right ) \right ) ^{{\it k1}}+{\it s2}\, \left ( \cosh \left ( {\frac {\beta 2\, \left ( ya-b \left ( x-{\it \_f} \right ) \right ) }{a}} \right ) \right ) ^{{\it k2}} \right ) }{d{\it \_f}} \right ) \]

____________________________________________________________________________________

132.4 Problem 4

problem number 1066

Added April 3, 2019.

Problem Chapter 5.4.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + y w_y = a x \cosh (\lambda x+\mu y) w + b \cosh (\nu x) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Cosh[lambda*x+my*y]+b*Cosh[nu*x]; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \left \{\left \{w(x,y)\to \frac {a x \sinh (\lambda x+\text {my} y)}{\lambda x+\text {my} y}+b \text {Chi}(\nu x)+c_1\left (\frac {y}{x}\right )\right \}\right \} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2'); 
pde :=  x*diff(w(x,y),x)+ y*diff(w(x,y),y) = a*x*cosh(lambda*x+my*y)+b*cosh(nu*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) =-1/2\,{a{{\rm e}^{-\lambda \,x-{\it my}\,y}} \left ( {\frac {{\it my}\,y}{x}}+\lambda \right ) ^{-1}}+1/2\,{a{{\rm e}^{\lambda \,x+{\it my}\,y}} \left ( {\frac {{\it my}\,y}{x}}+\lambda \right ) ^{-1}}-1/2\,b\Ei \left ( 1,-\nu \,x \right ) -1/2\,b\Ei \left ( 1,\nu \,x \right ) +{\it \_F1} \left ( {\frac {y}{x}} \right ) \]

____________________________________________________________________________________

132.5 Problem 5

problem number 1067

Added April 3, 2019.

Problem Chapter 5.4.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a \cosh ^n(\lambda x) w_x + b \cosh ^m(\mu x) w_y = c \cosh ^k(\nu x) w + p \cosh ^s(\beta y) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Cosh[lambda*x]^n*D[w[x, y], x] + b*Cosh[mu*x]^m*D[w[x, y], y] == c*Cosh[nu*x]^k+p*Cosh[beta*y]^s; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2'); 
pde :=  a*cosh(lambda*x)^n*diff(w(x,y),x)+ b*cosh(mu*x)^m*diff(w(x,y),y) = c*cosh(nu*x)^k+p*cosh(beta*y)^s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) =\int ^{x}\!{\frac { \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{a} \left ( c \left ( \cosh \left ( \nu \,{\it \_b} \right ) \right ) ^{k}+ \left ( \cosh \left ( {\frac {\beta \, \left ( b\int \! \left ( \cosh \left ( {\it \_b}\,\mu \right ) \right ) ^{m} \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}\,{\rm d}{\it \_b}-b\int \! \left ( \cosh \left ( \mu \,x \right ) \right ) ^{m} \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x+ya \right ) }{a}} \right ) \right ) ^{s}p \right ) }{d{\it \_b}}+{\it \_F1} \left ( {\frac {-b\int \! \left ( \cosh \left ( \mu \,x \right ) \right ) ^{m} \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x+ya}{a}} \right ) \]

____________________________________________________________________________________

132.6 Problem 6

problem number 1068

Added April 3, 2019.

Problem Chapter 5.4.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a \cosh ^n(\lambda x) w_x + b \cosh ^m(\mu x) w_y = c \cosh ^k(\nu y) w + p \cosh ^s(\beta x) \]

Mathematica

ClearAll[w, x, y, n, a, b, m, c, k, alpha, beta, gamma, A, C0, s]; 
 ClearAll[lambda, B, mu, d, g, B, v, f, h, q, p, delta, t]; 
 ClearAll[g1, g0, h2, h1, h0, f1, f2,sigma,lambda1,lambda2,n1,n2]; 
 ClearAll[a1, a0, b2, b1, b0, c2, c1, c0, k0, k1, k2, s1, s0, k22, k11, k12, s11, s22, s12, nu]; 
 pde = a*Cosh[lambda*x]^n*D[w[x, y], x] + b*Cosh[mu*x]^m*D[w[x, y], y] == c*Cosh[nu*y]^k+p*Cosh[beta*x]^s; 
 sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]]; 
 sol = Simplify[sol];
 

\[ \text {\$Aborted} \]

Maple

 
unassign('w,x,y,a,b,n,m,c,k,alpha,beta,g,A,f,C,lambda,B,mu,d,s,t'); 
unassign('v,q,p,l,g1,g2,g0,h0,h1,h2,f2,f3,c0,c1,c2,a1,a0,b0,b1,b2'); 
unassign('k0,k1,k2,s0,s1,k22,k12,k11,s22,s12,s11,sigma,lambda1,lambda2,n1,n2'); 
pde :=  a*cosh(lambda*x)^n*diff(w(x,y),x)+ b*cosh(mu*x)^m*diff(w(x,y),y) = c*cosh(nu*y)^k+p*cosh(beta*x)^s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime')); 
sol:=simplify(sol,size);
 

\[ w \left ( x,y \right ) =\int ^{x}\!{\frac { \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}}{a} \left ( \left ( \cosh \left ( {\frac {\nu \, \left ( b\int \! \left ( \cosh \left ( {\it \_b}\,\mu \right ) \right ) ^{m} \left ( \cosh \left ( {\it \_b}\,\lambda \right ) \right ) ^{-n}\,{\rm d}{\it \_b}-b\int \! \left ( \cosh \left ( \mu \,x \right ) \right ) ^{m} \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x+ya \right ) }{a}} \right ) \right ) ^{k}c+p \left ( \cosh \left ( \beta \,{\it \_b} \right ) \right ) ^{s} \right ) }{d{\it \_b}}+{\it \_F1} \left ( {\frac {-b\int \! \left ( \cosh \left ( \mu \,x \right ) \right ) ^{m} \left ( \cosh \left ( \lambda \,x \right ) \right ) ^{-n}\,{\rm d}x+ya}{a}} \right ) \]