Integral number [116] \[ \int \frac {\cot ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 0.41034 (sec), size = 177 ,normalized size = 7.7 \[ \frac {6 \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (4 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)+5 \left (a^2+2 a b x+b^2 x^2+1\right ) \left (2 (a+b x) \cot ^{-1}(a+b x)-3\right )\right )-5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right )}{20 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (a^2+2 a b x+b^2 x^2+1\right )^{4/3}} \]
[In]
[Out]
Integral number [117] \[ \int \frac {\cot ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.112107 (sec), size = 180 ,normalized size = 7.2 \[ \frac {c \left (6 \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (4 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)+5 \left (a^2+2 a b x+b^2 x^2+1\right ) \left (2 (a+b x) \cot ^{-1}(a+b x)-3\right )\right )-5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right )\right )}{20 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (c \left (a^2+2 a b x+b^2 x^2+1\right )\right )^{4/3}} \]
[In]
[Out]
Integral number [120] \[ \int \frac {(a+b x)^2 \cot ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 1.00319 (sec), size = 198 ,normalized size = 6.6 \[ \frac {3 \left (5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right )+\Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (5 \left ((a+b x)^2+1\right ) \left (3 \left ((a+b x)^2+7\right )+4 (a+b x) \left ((a+b x)^2-2\right ) \cot ^{-1}(a+b x)\right )-24 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)\right )\right )}{140 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \sqrt [3]{a^2+2 a b x+b^2 x^2+1} \left ((a+b x)^2+1\right )} \]
[In]
[Out]
Integral number [121] \[ \int \frac {(a+b x)^2 \cot ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.224771 (sec), size = 200 ,normalized size = 6.25 \[ \frac {3 \left (5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right )+\Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (5 \left ((a+b x)^2+1\right ) \left (3 \left ((a+b x)^2+7\right )+4 (a+b x) \left ((a+b x)^2-2\right ) \cot ^{-1}(a+b x)\right )-24 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)\right )\right )}{140 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left ((a+b x)^2+1\right ) \sqrt [3]{c \left (a^2+2 a b x+b^2 x^2+1\right )}} \]
[In]
[Out]