Integral number [65] \[ \int \frac {\tan ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 0.421783 (sec), size = 163 ,normalized size = 7.09 \[ \frac {\frac {5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{(a+b x)^2+1}\right )}{(a+b x)^2+1}+6 \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (\frac {4 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{(a+b x)^2+1}\right ) \tan ^{-1}(a+b x)}{(a+b x)^2+1}+10 (a+b x) \tan ^{-1}(a+b x)+15\right )}{20 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \sqrt [3]{a^2+2 a b x+b^2 x^2+1}} \]
[In]
[Out]
Integral number [66] \[ \int \frac {\tan ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.0997431 (sec), size = 165 ,normalized size = 6.6 \[ \frac {\frac {5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{(a+b x)^2+1}\right )}{(a+b x)^2+1}+6 \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (\frac {4 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{(a+b x)^2+1}\right ) \tan ^{-1}(a+b x)}{(a+b x)^2+1}+10 (a+b x) \tan ^{-1}(a+b x)+15\right )}{20 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \sqrt [3]{c \left (a^2+2 a b x+b^2 x^2+1\right )}} \]
[In]
[Out]
Integral number [69] \[ \int \frac {(a+b x)^2 \tan ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 1.57668 (sec), size = 181 ,normalized size = 6.03 \[ -\frac {3 \left ((a+b x)^2+1\right )^{2/3} \left (\frac {5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{(a+b x)^2+1}\right )}{\left ((a+b x)^2+1\right )^2}+\Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (\frac {24 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{(a+b x)^2+1}\right ) \tan ^{-1}(a+b x)}{\left ((a+b x)^2+1\right )^2}+\frac {90}{(a+b x)^2+1}+5 \tan ^{-1}(a+b x) \left (6 \sin \left (2 \tan ^{-1}(a+b x)\right )-4 (a+b x)\right )+15\right )\right )}{140 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right )} \]
[In]
[Out]
Integral number [70] \[ \int \frac {(a+b x)^2 \tan ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.800008 (sec), size = 225 ,normalized size = 7.03 \[ -\frac {3 \sqrt [3]{a^2+2 a b x+b^2 x^2+1} \left ((a+b x)^2+1\right )^{2/3} \left (\frac {5 \sqrt [3]{2} \sqrt {\pi } \Gamma \left (\frac {5}{3}\right ) \, _3F_2\left (1,\frac {4}{3},\frac {4}{3};\frac {11}{6},\frac {7}{3};\frac {1}{(a+b x)^2+1}\right )}{\left ((a+b x)^2+1\right )^2}+\Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \left (\frac {24 (a+b x) \, _2F_1\left (1,\frac {4}{3};\frac {11}{6};\frac {1}{(a+b x)^2+1}\right ) \tan ^{-1}(a+b x)}{\left ((a+b x)^2+1\right )^2}+\frac {90}{(a+b x)^2+1}+5 \tan ^{-1}(a+b x) \left (6 \sin \left (2 \tan ^{-1}(a+b x)\right )-4 (a+b x)\right )+15\right )\right )}{140 b \Gamma \left (\frac {11}{6}\right ) \Gamma \left (\frac {7}{3}\right ) \sqrt [3]{c \left (a^2+2 a b x+b^2 x^2+1\right )}} \]
[In]
[Out]