Integral number [74] \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.534942 (sec), size = 826 ,normalized size = 25.03 \[ \frac {\cosh (3 (c+d x)) a^3+27 b \sinh (c+d x) a^2-b \sinh (3 (c+d x)) a^2-9 \left (a^2+3 b^2\right ) \cosh (c+d x) a-b^2 \cosh (3 (c+d x)) a-2 b \text {RootSum}\left [a \text {$\#$1}^6+b \text {$\#$1}^6+3 a \text {$\#$1}^4-3 b \text {$\#$1}^4+3 a \text {$\#$1}^2+3 b \text {$\#$1}^2+a-b\& ,\frac {3 a^2 c \text {$\#$1}^4+3 b^2 c \text {$\#$1}^4-3 a b c \text {$\#$1}^4+3 a^2 d x \text {$\#$1}^4+3 b^2 d x \text {$\#$1}^4-3 a b d x \text {$\#$1}^4+6 a^2 \log \left (\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^4+6 b^2 \log \left (\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^4-6 a b \log \left (\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^4+2 a^2 c \text {$\#$1}^2-2 b^2 c \text {$\#$1}^2+2 a^2 d x \text {$\#$1}^2-2 b^2 d x \text {$\#$1}^2+4 a^2 \log \left (\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^2-4 b^2 \log \left (\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^2+3 a^2 c+3 b^2 c+3 a b c+3 a^2 d x+3 b^2 d x+3 a b d x+6 a^2 \log \left (\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right )+6 b^2 \log \left (\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right )+6 a b \log \left (\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right )}{a \text {$\#$1}^5+b \text {$\#$1}^5+2 a \text {$\#$1}^3-2 b \text {$\#$1}^3+a \text {$\#$1}+b \text {$\#$1}}\& \right ] a+9 b^3 \sinh (c+d x)+b^3 \sinh (3 (c+d x))}{12 (a-b)^2 (a+b)^2 d} \]
[In]
[Out]
Integral number [76] \[ \int \frac {\sinh (c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.26943 (sec), size = 409 ,normalized size = 13.19 \[ \frac {b \text {RootSum}\left [\text {$\#$1}^6 a+\text {$\#$1}^6 b+3 \text {$\#$1}^4 a-3 \text {$\#$1}^4 b+3 \text {$\#$1}^2 a+3 \text {$\#$1}^2 b+a-b\& ,\frac {4 \text {$\#$1}^4 a \log \left (-\text {$\#$1} \sinh \left (\frac {1}{2} (c+d x)\right )+\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )\right )+2 \text {$\#$1}^4 a c+2 \text {$\#$1}^4 a d x-2 \text {$\#$1}^4 b \log \left (-\text {$\#$1} \sinh \left (\frac {1}{2} (c+d x)\right )+\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )\right )-\text {$\#$1}^4 b c-\text {$\#$1}^4 b d x+4 a \log \left (-\text {$\#$1} \sinh \left (\frac {1}{2} (c+d x)\right )+\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )\right )+2 b \log \left (-\text {$\#$1} \sinh \left (\frac {1}{2} (c+d x)\right )+\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )\right )+2 a c+2 a d x+b c+b d x}{\text {$\#$1}^5 a+\text {$\#$1}^5 b+2 \text {$\#$1}^3 a-2 \text {$\#$1}^3 b+\text {$\#$1} a+\text {$\#$1} b}\& \right ]+6 a \cosh (c+d x)-6 b \sinh (c+d x)}{6 d (a-b) (a+b)} \]
[In]
[Out]
Integral number [77] \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.179177 (sec), size = 319 ,normalized size = 10.29 \[ \frac {6 \log \left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )-b \text {RootSum}\left [\text {$\#$1}^6 a+\text {$\#$1}^6 b+3 \text {$\#$1}^4 a-3 \text {$\#$1}^4 b+3 \text {$\#$1}^2 a+3 \text {$\#$1}^2 b+a-b\& ,\frac {2 \text {$\#$1}^4 \log \left (-\text {$\#$1} \sinh \left (\frac {1}{2} (c+d x)\right )+\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )\right )+\text {$\#$1}^4 c+\text {$\#$1}^4 d x-4 \text {$\#$1}^2 \log \left (-\text {$\#$1} \sinh \left (\frac {1}{2} (c+d x)\right )+\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )\right )-2 \text {$\#$1}^2 c-2 \text {$\#$1}^2 d x+2 \log \left (-\text {$\#$1} \sinh \left (\frac {1}{2} (c+d x)\right )+\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )\right )+c+d x}{\text {$\#$1}^5 a+\text {$\#$1}^5 b+2 \text {$\#$1}^3 a-2 \text {$\#$1}^3 b+\text {$\#$1} a+\text {$\#$1} b}\& \right ]}{6 a d} \]
[In]
[Out]
Integral number [79] \[ \int \frac {\text {csch}^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.386272 (sec), size = 201 ,normalized size = 6.09 \[ -\frac {16 b \text {RootSum}\left [\text {$\#$1}^6 a+\text {$\#$1}^6 b+3 \text {$\#$1}^4 a-3 \text {$\#$1}^4 b+3 \text {$\#$1}^2 a+3 \text {$\#$1}^2 b+a-b\& ,\frac {2 \text {$\#$1} \log \left (-\text {$\#$1} \sinh \left (\frac {1}{2} (c+d x)\right )+\text {$\#$1} \cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )-\cosh \left (\frac {1}{2} (c+d x)\right )\right )+\text {$\#$1} c+\text {$\#$1} d x}{\text {$\#$1}^4 a+\text {$\#$1}^4 b+2 \text {$\#$1}^2 a-2 \text {$\#$1}^2 b+a+b}\& \right ]+3 \left (\text {csch}^2\left (\frac {1}{2} (c+d x)\right )+\text {sech}^2\left (\frac {1}{2} (c+d x)\right )+4 \log \left (\tanh \left (\frac {1}{2} (c+d x)\right )\right )\right )}{24 a d} \]
[In]
[Out]
Integral number [74] \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.467 (sec), size = 346 ,normalized size = 10.48 \[ -\frac {a b \left (\munderset {\textit {\_R} =\RootOf \left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\left (2 a^{2}+b^{2}\right ) \textit {\_R}^{4}-6 \textit {\_R}^{3} a b +2 \left (4 a^{2}+5 b^{2}\right ) \textit {\_R}^{2}-6 a b \textit {\_R} +2 a^{2}+b^{2}\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 d \left (a +b \right )^{2} \left (a -b \right )^{2}}-\frac {16}{3 d \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (16 a +16 b \right )}-\frac {8}{d \left (16 a +16 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {a}{2 d \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {b}{d \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {8}{d \left (16 a -16 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {16}{3 d \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \left (16 a -16 b \right )}-\frac {a}{2 d \left (a -b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {b}{d \left (a -b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )} \]
[In]
[Out]
Integral number [76] \[ \int \frac {\sinh (c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.528 (sec), size = 164 ,normalized size = 5.29 \[ \frac {b \left (\munderset {\textit {\_R} =\RootOf \left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\textit {\_R}^{4} a -2 \textit {\_R}^{3} b +6 \textit {\_R}^{2} a -2 \textit {\_R} b +a \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 d \left (a -b \right ) \left (a +b \right )}+\frac {4}{d \left (4 a -4 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {4}{d \left (4 a +4 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )} \]
[In]
[Out]
Integral number [77] \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.619 (sec), size = 98 ,normalized size = 3.16 \[ -\frac {4 b \left (\munderset {\textit {\_R} =\RootOf \left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 d a}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a} \]
[In]
[Out]
Integral number [79] \[ \int \frac {\text {csch}^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.595 (sec), size = 144 ,normalized size = 4.36 \[ \frac {\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}-\frac {b \left (\munderset {\textit {\_R} =\RootOf \left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\textit {\_R}^{4}-2 \textit {\_R}^{2}+1\right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 d a}-\frac {1}{8 d a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a} \]
[In]
[Out]
Integral number [74] \[ \int \frac {\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 3.16393 (sec), size = 344 ,normalized size = 10.42 \[ -\frac {\frac {{\left (9 \, a e^{\left (2 \, d x + 2 \, c\right )} + 9 \, b e^{\left (2 \, d x + 2 \, c\right )} - a + b\right )} e^{\left (-3 \, d x\right )}}{a^{2} e^{\left (3 \, c\right )} - 2 \, a b e^{\left (3 \, c\right )} + b^{2} e^{\left (3 \, c\right )}} - \frac {a^{2} e^{\left (3 \, d x + 30 \, c\right )} + 2 \, a b e^{\left (3 \, d x + 30 \, c\right )} + b^{2} e^{\left (3 \, d x + 30 \, c\right )} - 9 \, a^{2} e^{\left (d x + 28 \, c\right )} + 9 \, b^{2} e^{\left (d x + 28 \, c\right )}}{a^{3} e^{\left (27 \, c\right )} + 3 \, a^{2} b e^{\left (27 \, c\right )} + 3 \, a b^{2} e^{\left (27 \, c\right )} + b^{3} e^{\left (27 \, c\right )}}}{24 \, d} - \frac {\frac {6 \, {\left (a^{3} b e^{c} + a^{2} b^{2} e^{c} + a b^{3} e^{c}\right )} d x}{a - b} - \frac {{\left (a^{3} b e^{c} + a^{2} b^{2} e^{c} + a b^{3} e^{c}\right )} \log \left ({\left | a e^{\left (6 \, d x + 6 \, c\right )} + b e^{\left (6 \, d x + 6 \, c\right )} + 3 \, a e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a e^{\left (2 \, d x + 2 \, c\right )} + 3 \, b e^{\left (2 \, d x + 2 \, c\right )} + a - b \right |}\right )}{a - b}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} d^{2}} \]
[In]
[Out]
Integral number [76] \[ \int \frac {\sinh (c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 1.84122 (sec), size = 189 ,normalized size = 6.1 \[ \frac {\frac {e^{\left (d x + 8 \, c\right )}}{a e^{\left (7 \, c\right )} + b e^{\left (7 \, c\right )}} + \frac {e^{\left (-d x\right )}}{a e^{c} - b e^{c}}}{2 \, d} + \frac {\frac {6 \, {\left (2 \, a b e^{c} + b^{2} e^{c}\right )} d x}{a - b} - \frac {{\left (2 \, a b e^{c} + b^{2} e^{c}\right )} \log \left ({\left | a e^{\left (6 \, d x + 6 \, c\right )} + b e^{\left (6 \, d x + 6 \, c\right )} + 3 \, a e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a e^{\left (2 \, d x + 2 \, c\right )} + 3 \, b e^{\left (2 \, d x + 2 \, c\right )} + a - b \right |}\right )}{a - b}}{3 \, {\left (a^{2} - b^{2}\right )} d^{2}} \]
[In]
[Out]
Integral number [77] \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 1.39841 (sec), size = 147 ,normalized size = 4.74 \[ -\frac {\frac {\log \left (e^{\left (d x + c\right )} + 1\right )}{a} - \frac {\log \left ({\left | e^{\left (d x + c\right )} - 1 \right |}\right )}{a}}{d} - \frac {\frac {6 \, b d x e^{c}}{a - b} - \frac {b e^{c} \log \left ({\left | a e^{\left (6 \, d x + 6 \, c\right )} + b e^{\left (6 \, d x + 6 \, c\right )} + 3 \, a e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a e^{\left (2 \, d x + 2 \, c\right )} + 3 \, b e^{\left (2 \, d x + 2 \, c\right )} + a - b \right |}\right )}{a - b}}{3 \, a d^{2}} \]
[In]
[Out]
Integral number [79] \[ \int \frac {\text {csch}^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.788413 (sec), size = 68 ,normalized size = 2.06 \[ \frac {\frac {\log \left (e^{\left (d x + c\right )} + 1\right )}{a} - \frac {\log \left ({\left | e^{\left (d x + c\right )} - 1 \right |}\right )}{a} - \frac {2 \, {\left (e^{\left (3 \, d x + 3 \, c\right )} + e^{\left (d x + c\right )}\right )}}{a {\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}^{2}}}{2 \, d} \]
[In]
[Out]