Integral number [399] \[ \int \frac {\cos ^4(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 0.357346 (sec), size = 394 ,normalized size = 15.15 \[ \frac {\frac {24 \cos (c+d x) (a+b \sin (c+d x))}{4 a+3 b \sin (c+d x)-b \sin (3 (c+d x))}-i \text {RootSum}\left [i \text {$\#$1}^6 b-3 i \text {$\#$1}^4 b+8 \text {$\#$1}^3 a+3 i \text {$\#$1}^2 b-i b\& ,\frac {2 \text {$\#$1}^4 b \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-4 i \text {$\#$1}^3 a \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )+2 \text {$\#$1} a \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )-6 i \text {$\#$1}^2 b \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )-i b \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )+12 \text {$\#$1}^2 b \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-i \text {$\#$1}^4 b \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )-2 \text {$\#$1}^3 a \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )+4 i \text {$\#$1} a \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )+2 b \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )}{\text {$\#$1}^5 b-2 \text {$\#$1}^3 b-4 i \text {$\#$1}^2 a+\text {$\#$1} b}\& \right ]}{18 a b d} \]
[In]
[Out]
Integral number [400] \[ \int \frac {\cos ^2(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 0.236978 (sec), size = 273 ,normalized size = 10.5 \[ \frac {\frac {12 \sin (2 (c+d x))}{4 a+3 b \sin (c+d x)-b \sin (3 (c+d x))}-i \text {RootSum}\left [i \text {$\#$1}^6 b-3 i \text {$\#$1}^4 b+8 \text {$\#$1}^3 a+3 i \text {$\#$1}^2 b-i b\& ,\frac {2 \text {$\#$1}^4 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-6 i \text {$\#$1}^2 \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )-i \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )+12 \text {$\#$1}^2 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-i \text {$\#$1}^4 \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )+2 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )}{\text {$\#$1}^5 b-2 \text {$\#$1}^3 b-4 i \text {$\#$1}^2 a+\text {$\#$1} b}\& \right ]}{18 a d} \]
[In]
[Out]
Integral number [401] \[ \int \frac {1}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 0.476477 (sec), size = 502 ,normalized size = 29.53 \[ \frac {-\frac {12 b \cos (c+d x) (a \cos (2 (c+d x))-3 a+2 b \sin (c+d x))}{(a-b) (a+b) (4 a+3 b \sin (c+d x)-b \sin (3 (c+d x)))}+\frac {i \text {RootSum}\left [i \text {$\#$1}^6 b-3 i \text {$\#$1}^4 b+8 \text {$\#$1}^3 a+3 i \text {$\#$1}^2 b-i b\& ,\frac {2 \text {$\#$1}^4 b^2 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-4 i \text {$\#$1}^3 a b \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )+12 i \text {$\#$1}^2 a^2 \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )-24 \text {$\#$1}^2 a^2 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )+2 \text {$\#$1} a b \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )-6 i \text {$\#$1}^2 b^2 \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )-i b^2 \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )+12 \text {$\#$1}^2 b^2 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-i \text {$\#$1}^4 b^2 \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )-2 \text {$\#$1}^3 a b \log \left (\text {$\#$1}^2-2 \text {$\#$1} \cos (c+d x)+1\right )+4 i \text {$\#$1} a b \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )+2 b^2 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )}{\text {$\#$1}^5 b-2 \text {$\#$1}^3 b-4 i \text {$\#$1}^2 a+\text {$\#$1} b}\& \right ]}{a^2-b^2}}{18 a d} \]
[In]
[Out]
Integral number [402] \[ \int \frac {\sec ^2(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 1.60412 (sec), size = 845 ,normalized size = 32.5 \[ \frac {-\frac {i b \text {RootSum}\left [i b \text {$\#$1}^6-3 i b \text {$\#$1}^4+8 a \text {$\#$1}^3+3 i b \text {$\#$1}^2-i b\& ,\frac {2 b^3 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^4+16 a^2 b \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^4-i b^3 \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right ) \text {$\#$1}^4-8 i a^2 b \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right ) \text {$\#$1}^4-20 i a^3 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^3-16 i a b^2 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^3-10 a^3 \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right ) \text {$\#$1}^3-8 a b^2 \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right ) \text {$\#$1}^3+12 b^3 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^2-120 a^2 b \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}^2-6 i b^3 \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right ) \text {$\#$1}^2+60 i a^2 b \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right ) \text {$\#$1}^2+20 i a^3 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}+16 i a b^2 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right ) \text {$\#$1}+10 a^3 \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right ) \text {$\#$1}+8 a b^2 \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right ) \text {$\#$1}+2 b^3 \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )+16 a^2 b \tan ^{-1}\left (\frac {\sin (c+d x)}{\cos (c+d x)-\text {$\#$1}}\right )-i b^3 \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right )-8 i a^2 b \log \left (\text {$\#$1}^2-2 \cos (c+d x) \text {$\#$1}+1\right )}{b \text {$\#$1}^5-2 b \text {$\#$1}^3-4 i a \text {$\#$1}^2+b \text {$\#$1}}\& \right ]}{a \left (a^2-b^2\right )^2}+\frac {18 \sin \left (\frac {1}{2} (c+d x)\right )}{(a+b)^2 \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}+\frac {18 \sin \left (\frac {1}{2} (c+d x)\right )}{(a-b)^2 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}+\frac {12 b \cos (c+d x) \left (-2 a^3-7 b^2 a+3 b^2 \cos (2 (c+d x)) a+2 b \left (2 a^2+b^2\right ) \sin (c+d x)\right )}{a (a-b)^2 (a+b)^2 (4 a+3 b \sin (c+d x)-b \sin (3 (c+d x)))}}{18 d} \]
[In]
[Out]
Integral number [403] \[ \int \frac {\sec ^4(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[C] time = 1.74385 (sec), size = 1158 ,normalized size = 44.54 \[ \text {result too large to display} \]
[In]
[Out]
Integral number [399] \[ \int \frac {\cos ^4(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.965 (sec), size = 550 ,normalized size = 21.15 \[ -\frac {2 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) a}+\frac {2 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) b}+\frac {8 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) a}+\frac {4 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) b}+\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) a}+\frac {2}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) b}+\frac {2 \left (\munderset {\textit {\_R} =\RootOf \left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\textit {\_R}^{4} b +\textit {\_R}^{3} a +\textit {\_R} a +b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{9 d a b} \]
[In]
[Out]
Integral number [400] \[ \int \frac {\cos ^2(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.944 (sec), size = 236 ,normalized size = 9.08 \[ -\frac {2 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) a}+\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) a}+\frac {2 \left (\munderset {\textit {\_R} =\RootOf \left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\textit {\_R}^{4}+1\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{9 d a} \]
[In]
[Out]
Integral number [401] \[ \int \frac {1}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.65 (sec), size = 658 ,normalized size = 38.71 \[ \frac {2 b^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) a \left (a^{2}-b^{2}\right )}-\frac {2 b \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) \left (a^{2}-b^{2}\right )}+\frac {8 b^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) a \left (a^{2}-b^{2}\right )}+\frac {8 b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) \left (a^{2}-b^{2}\right )}-\frac {2 b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) a \left (a^{2}-b^{2}\right )}+\frac {2 b}{3 d \left (\left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +8 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +a \right ) \left (a^{2}-b^{2}\right )}+\frac {\munderset {\textit {\_R} =\RootOf \left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\left (3 a^{2}-2 b^{2}\right ) \textit {\_R}^{4}-2 \textit {\_R}^{3} a b +6 \textit {\_R}^{2} a^{2}-2 a \textit {\_R} b +3 a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}}{9 d a \left (a^{2}-b^{2}\right )} \]
[In]
[Out]
Integral number [402] \[ \int \frac {\sec ^2(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 0.956 (sec), size = 1276 ,normalized size = 49.08 \[ \text {result too large to display} \]
[In]
[Out]
Integral number [403] \[ \int \frac {\sec ^4(c+d x)}{\left (a+b \sin ^3(c+d x)\right )^2} \, dx \]
[B] time = 1.183 (sec), size = 1549 ,normalized size = 59.58 \[ \text {result too large to display} \]
[In]
[Out]