4.9 HW 9

  4.9.1 Problem 10.2
  4.9.2 Problem 10.9
  4.9.3 Problem 10.26
  4.9.4 Problem 10.34
  4.9.5 Problem 10.36
  4.9.6 Problem 10.59
  4.9.7 key solution
PDF (letter size)
PDF (legal size)

4.9.1 Problem 10.2

Consider the signal\[ x\left [ n\right ] =\left ( \frac{1}{5}\right ) ^{n}u\left [ n-3\right ] \] Use eq. (10.3) \begin{equation} X\left [ z\right ] =\sum _{n=-\infty }^{n=\infty }x\left [ n\right ] z^{-n} \tag{10.3} \end{equation} to evaluate the Z-transform of this signal, and specify the corresponding region of convergence.

solution\[ X\left [ z\right ] =\sum _{n=-\infty }^{n=\infty }\left ( \frac{1}{5}\right ) ^{n}u\left [ n-3\right ] z^{-n}\] But \(u\left [ n-3\right ] \) is zero for \(n<3\) and \(1\) otherwise. Hence the above becomes\[ X\left [ z\right ] =\sum _{n=3}^{n=\infty }\left ( \frac{1}{5}\right ) ^{n}z^{-n}\] Let \(m=n-3\). When \(n=3,m=0\) therefore the above can be written as\begin{align*} X\left [ z\right ] & =\sum _{m=0}^{m=\infty }\left ( \frac{1}{5}\right ) ^{m+3}z^{-\left ( m+3\right ) }\\ & =\left ( \frac{z^{-1}}{5}\right ) ^{3}\sum _{m=0}^{m=\infty }\left ( \frac{1}{5}\right ) ^{m}z^{-m}\\ & =\frac{z^{-3}}{125}\sum _{m=0}^{m=\infty }\left ( \frac{1}{5}\right ) ^{m}z^{-m} \end{align*}

Renaming back to \(n\)\begin{equation} X\left [ z\right ] =\frac{z^{-3}}{125}\sum _{n=0}^{\infty }\left ( \frac{1}{5}\right ) ^{n}z^{-n}\tag{1} \end{equation} Now, looking at \(\sum _{n=0}^{n=\infty }\left ( \frac{1}{5z}\right ) ^{n}\) then assuming \(\left \vert 5z\right \vert >1\) and using the formula \(\sum _{n=0}^{n=\infty }a^{n}=\frac{1}{1-a}\), where \(a=\frac{1}{5z}\) in this case gives\[ \sum _{n=0}^{n=\infty }\left ( \frac{1}{5z}\right ) ^{n}=\frac{1}{1-\frac{1}{5}z^{-1}}\] Hence (1) becomes\[ X\left [ z\right ] =\frac{z^{-3}}{125}\left ( \frac{1}{1-\frac{1}{5}z^{-1}}\right ) \] The above shows a pole at \(\frac{1}{5}z^{-1}=1\) or \(z=\frac{1}{5}\) and a pole at \(z=0\). Since this is right handed signal, then the ROC is outside the outer most pole. Therefore ROC is\[ \left \vert z\right \vert >\frac{1}{5}\] Which means the region is outside a circle of radius \(\frac{1}{5}\). Since this ROC includes the unit circle, meaning a DTFT exist, it shows that this is a stable signal.

4.9.2 Problem 10.9

Using partial-fraction expansion and the fact that\[ a^{n}u\left [ n\right ] \overset{Z}{\longleftrightarrow }\frac{1}{1-az^{-1}}\qquad \left \vert z\right \vert >\left \vert a\right \vert \] Find the inverse Z-transform of \[ X\left ( z\right ) =\frac{1-\frac{1}{3}z^{-1}}{\left ( 1-z^{-1}\right ) \left ( 1+2z^{-1}\right ) }\qquad \left \vert z\right \vert >2 \] solution

Let\[ \frac{1-\frac{1}{3}z^{-1}}{\left ( 1-z^{-1}\right ) \left ( 1+2z^{-1}\right ) }=\frac{A}{\left ( 1-z^{-1}\right ) }+\frac{B}{\left ( 1+2z^{-1}\right ) }\] Hence \(A=\left ( \frac{1-\frac{1}{3}z^{-1}}{1+2z^{-1}}\right ) _{z^{-1}=1}=\frac{1-\frac{1}{3}}{1+2}=\frac{2}{9}\) and \(B=\left ( \frac{1-\frac{1}{3}z^{-1}}{\left ( 1-z^{-1}\right ) }\right ) _{z^{-1}=-\frac{1}{2}}=\frac{1-\frac{1}{3}\left ( -\frac{1}{2}\right ) }{\left ( 1-\left ( -\frac{1}{2}\right ) \right ) }=\frac{7}{9}\) Therefore the above becomes\[ X\left ( z\right ) =\frac{2}{9}\frac{1}{\left ( 1-z^{-1}\right ) }+\frac{7}{9}\frac{1}{\left ( 1+2z^{-1}\right ) }\] The pole of first term at \(z^{-1}=1\) or \(z=1\) and the pole for second term is \(2z^{-1}=-1\) or \(z=-2\). Since the ROC is outside the out most pole, then this is right handed signal. Hence\begin{align*} x\left [ n\right ] & =\frac{2}{9}u\left [ n\right ] +\frac{7}{9}\left ( -2\right ) ^{n}u\left [ n\right ] \\ & =\left ( \frac{2}{9}+\frac{7}{9}\left ( -2\right ) ^{n}\right ) u\left [ n\right ] \end{align*}

Which is valid when \(X\left ( z\right ) \) defined for \(\left \vert z\right \vert >2\) since this is the common region for \(\left \vert z\right \vert >1\) and \(\left \vert z\right \vert >2\) at the same time. We notice the ROC does not include the unit circle and hence it is not stable signal. This is confirmed by looking at the term \(\left ( -2\right ) ^{n}\) which grows with \(n\) with no limit.

4.9.3 Problem 10.26

   4.9.3.1 Part a
   4.9.3.2 Part b
   4.9.3.3 Part c

Consider a left-sided sequence \(x[n]\) with z-transform\[ X\left ( z\right ) =\frac{1}{\left ( 1-\frac{1}{2}z^{-1}\right ) \left ( 1-z^{-1}\right ) }\]

a
Write \(X\left ( z\right ) \) as a ratio of polynomials in \(z\) instead of \(z^{-1}\)
b
Using a partial-fraction expression, express \(X(z)\) as a sum of terms, where each term represents a pole from your answer in part (a).
c
Determine \(x\left [ n\right ] \)

solution

4.9.3.1 Part a

\begin{align*} X\left ( z\right ) & =\frac{z}{z\left ( 1-\frac{1}{2}z^{-1}\right ) \left ( 1-z^{-1}\right ) }\\ & =\frac{z}{\left ( z-\frac{1}{2}\right ) \left ( 1-z^{-1}\right ) }\\ & =\frac{z^{2}}{z\left ( z-\frac{1}{2}\right ) \left ( 1-z^{-1}\right ) }\\ & =\frac{z^{2}}{\left ( z-\frac{1}{2}\right ) \left ( z-1\right ) }\\ & =\frac{z^{2}}{z^{2}-\frac{3}{2}z+\frac{1}{2}} \end{align*}

One pols at \(z=\frac{1}{2}\) and one pole at \(z=1\).

4.9.3.2 Part b

\[ X\left ( z\right ) =\frac{z^{2}}{\left ( z-\frac{1}{2}\right ) \left ( z-1\right ) }\] To do partial fractions, the degree in numerator must be smaller than in the denominator, which is not the case here. Hence we start by factoring out a \(z\) which gives\begin{align*} X\left ( z\right ) & =z^{2}\left ( \frac{1}{\left ( z-\frac{1}{2}\right ) \left ( z-1\right ) }\right ) \\ & =z^{2}\left ( \frac{A}{z-\frac{1}{2}}+\frac{B}{z-1}\right ) \end{align*}

Hence\[ \frac{1}{\left ( z-\frac{1}{2}\right ) \left ( z-1\right ) }=\frac{A}{z-\frac{1}{2}}+\frac{B}{z-1}\] Therefore \(A=\left ( \frac{1}{\left ( z-1\right ) }\right ) _{z=\frac{1}{2}}=\frac{1}{\left ( \frac{1}{2}-1\right ) }=\allowbreak -2\) and \(B=\left ( \frac{1}{z-\frac{1}{2}}\right ) _{z=1}=\frac{1}{1-\frac{1}{2}}=2\). Hence the above becomes\begin{align*} X\left ( z\right ) & =z^{2}\left ( -\frac{2}{z-\frac{1}{2}}+\frac{2}{z-1}\right ) \\ & =2z^{2}\left ( -\frac{1}{z-\frac{1}{2}}+\frac{1}{z-1}\right ) \end{align*}

Pole at \(z=\frac{1}{2}\) and one at \(z=1\).

4.9.3.3 Part c

Writing the above as\[ X\left ( z\right ) =2z^{2}X_{1}\left ( z\right ) \] Where \(x_{1}\left [ n\right ] \iff X_{1}\left ( z\right ) \) where ROC for \(X_{1}\left ( z\right ) \) is inside the inner most pole (since left sided). Hence ROC for \(X_{1}\left ( z\right ) \) is \(\left \vert z\right \vert <\frac{1}{2}\). What is left is to find \(x_{1}\left [ n\right ] \) which is the inverse Z transform of \(\frac{-1}{z-\frac{1}{2}}+\frac{1}{z-1}\). We want to use \(a^{n}u\left [ n\right ] \overset{Z}{\longleftrightarrow }\frac{1}{1-az^{-1}}\) so rewriting this as\begin{align*} X_{1}\left ( z\right ) & =\frac{-1}{z-\frac{1}{2}}+\frac{1}{z-1}\\ & =\frac{-z^{-1}}{1-\frac{1}{2}z^{-1}}+\frac{z^{-1}}{1-z^{-1}} \end{align*}

Hence \begin{align} X\left ( z\right ) & =2z^{2}X_{1}\left ( z\right ) \nonumber \\ & =2z^{2}\left ( \frac{-z^{-1}}{1-\frac{1}{2}z^{-1}}+\frac{z^{-1}}{1-z^{-1}}\right ) \nonumber \\ & =2z\left ( \frac{-1}{1-\frac{1}{2}z^{-1}}+\frac{1}{1-z^{-1}}\right ) \tag{1} \end{align}

Then (since left handed) then \(\frac{-1}{1-\frac{1}{2}z^{-1}}\longleftrightarrow \left ( \frac{1}{2}\right ) ^{n}u\left [ -n-1\right ] \). Similarly for \(\frac{1}{1-z^{-1}}\longleftrightarrow -u\left [ -n-1\right ] \) . Hence \[ x\left [ n\right ] =\left ( \frac{1}{2}\right ) ^{n}u\left [ -n-1\right ] -u\left [ -n-1\right ] \] Substituting the above in (1) gives\[ x\left [ n\right ] =2\left ( \left ( \frac{1}{2}\right ) ^{n}u\left [ -n-2\right ] -u\left [ -n-2\right ] \right ) \] Where \(u\left [ -n-1\right ] \) is changed to \(u\left [ -n-2\right ] \) because of the extra \(z\) in (1) outside, which causes extra shift and same for \(u\left [ -n-1\right ] \) changed to \(u\left [ -n-2\right ] \). Therefore the final answer is\[ x\left [ n\right ] =2\left ( \frac{1}{2}\right ) ^{n}u\left [ -n-2\right ] -2u\left [ -n-2\right ] \]

4.9.4 Problem 10.34

   4.9.4.1 Part a
   4.9.4.2 Part b
   4.9.4.3 Part c

A causal LTI system is described by the difference equation\[ y\left [ n\right ] =y\left [ n-1\right ] +y\left [ n-2\right ] +x\left [ n-1\right ] \]

a
Find the system function \(H\left ( z\right ) =\frac{Y\left ( z\right ) }{X\left ( z\right ) }\) for this system. Plot the poles and zeros of \(H(z)\) and indicate the region of convergence.
b
Find the unit sample response of the system.
c
You should have found the system to be unstable. Find a stable (non causal) unit sample response that satisfies the difference equation.

solution

4.9.4.1 Part a

Taking the \(Z\) transform of the difference equation gives\begin{align*} Y\left ( z\right ) & =z^{-1}Y\left ( z\right ) +z^{-2}Y\left ( z\right ) +z^{-1}X\left ( z\right ) \\ Y\left ( z\right ) \left ( 1-z^{-1}-z^{-2}\right ) & =z^{-1}X\left ( z\right ) \\ \frac{Y\left ( z\right ) }{X\left ( z\right ) } & =\frac{z^{-1}}{1-z^{-1}-z^{-2}}\\ & =\frac{z}{z^{2}-z-1}\\ & =\frac{z}{\left ( z-\left ( \frac{1}{2}\sqrt{5}+\frac{1}{2}\right ) \right ) \left ( z-\left ( \frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) \right ) } \end{align*}

Hence a pole at \(z=\frac{1}{2}\sqrt{5}+\frac{1}{2}=1.618\) and a pole at \(z=\left ( \frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) =\) \(-0.618\) and zero at \(z=0\)

Since this is a causal \(H\left ( z\right ) \) then ROC is always to the right of the right most pole. Hence ROC is \[ \left \vert z\right \vert >\frac{1}{2}\sqrt{5}+\frac{1}{2}=1.618 \] Here is a plot of the poles and zeros. The ROC is all the region to the right of \(1.618\) pole.

pict
Figure 4.77:\(H(z)\) Pole Zero plot. Red points are poles. Blue is zeros

pict
Figure 4.78:Code used for the above
4.9.4.2 Part b

If the input \(x\left [ n\right ] =\delta \left [ n\right ] \) then the difference equation is now\[ y\left [ n\right ] =y\left [ n-1\right ] +y\left [ n-2\right ] +\delta \left [ n-1\right ] \] Hence taking the Z transform gives\begin{align} Y\left ( z\right ) & =z^{-1}Y\left ( z\right ) +z^{-2}Y\left ( z\right ) +z^{-1}\nonumber \\ Y\left ( z\right ) \left ( 1-z^{-2}-z^{-1}\right ) & =z^{-1}\nonumber \\ Y\left ( z\right ) & =\frac{z^{-1}}{1-z^{-1}-z^{-2}}\nonumber \\ & =\frac{-z^{-1}}{z^{-2}+z^{-1}-1}\nonumber \\ & =\frac{-z^{-1}}{\left ( z^{-1}-\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) \right ) \left ( z^{-1}-\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) \right ) } \tag{1} \end{align}

Applying partial fractions gives \[ \frac{-z^{-1}}{\left ( z^{-1}-\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) \right ) \left ( z^{-1}-\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) \right ) }=\frac{A}{z^{-1}-\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) }+\frac{B}{z^{-1}-\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) }\] Hence \[ A=\left ( \frac{-z^{-1}}{\left ( z^{-1}-\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) \right ) }\right ) _{z^{-1}=\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) }=\frac{-\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) }{\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) -\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) }=\frac{1}{10}\sqrt{5}-\frac{1}{2}\] And \[ B=\left ( \frac{-z^{-1}}{z^{-1}-\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) }\right ) _{z=\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) }=\frac{-\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) }{\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) -\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) }=-\frac{1}{10}\sqrt{5}-\frac{1}{2}\] Therefore (1) becomes\begin{align*} Y\left ( z\right ) & =\left ( \frac{1}{10}\sqrt{5}-\frac{1}{2}\right ) \frac{1}{z^{-1}-\left ( -\frac{1}{2}+\frac{1}{2}\sqrt{5}\right ) }-\left ( \frac{1}{10}\sqrt{5}+\frac{1}{2}\right ) \frac{1}{z^{-1}-\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) }\\ & =\frac{\left ( \frac{1}{10}\sqrt{5}-\frac{1}{2}\right ) }{-\frac{1}{2}+\frac{1}{2}\sqrt{5}}\frac{1}{\frac{1}{-\frac{1}{2}+\frac{1}{2}\sqrt{5}}z^{-1}-1}-\frac{\left ( \frac{1}{10}\sqrt{5}+\frac{1}{2}\right ) }{\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) }\frac{1}{\frac{1}{\left ( -\frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) }z^{-1}-1}\\ & =\frac{1}{5}\sqrt{5}\frac{1}{1-\left ( \frac{2}{-1+\sqrt{5}}\right ) z^{-1}}-\frac{1}{5}\sqrt{5}\frac{1}{1-\frac{2}{\left ( -1-\sqrt{5}\right ) }z^{-1}}\\ & =\frac{1}{5}\sqrt{5}\frac{1}{1-\left ( \frac{1}{2}\sqrt{5}+\frac{1}{2}\right ) z^{-1}}-\frac{1}{5}\sqrt{5}\frac{1}{1-\left ( \frac{1}{2}-\frac{1}{2}\sqrt{5}\right ) z^{-1}} \end{align*}

Now we can use the table \(\frac{1}{1-az^{-1}}\rightarrow a^{n}u\left [ n\right ] \) for \(\left \vert z\right \vert >a\). Taking the inverse Z transform of the above gives\begin{align*} y\left [ n\right ] & =-\left ( \frac{1}{5}\sqrt{5}\right ) \left ( \frac{1+\sqrt{5}}{2}\right ) ^{n}u\left [ n\right ] +\left ( \frac{1}{5}\sqrt{5}\right ) \left ( \frac{1-\sqrt{5}}{2}\right ) ^{n}u\left [ n\right ] \\ & =\left ( -\left ( 0.447\,21\right ) \left ( 1.618\right ) ^{n}+\left ( 0.447\,21\right ) \left ( -0.618\right ) ^{n}\right ) u\left [ n\right ] \end{align*}

This is unstable response \(y\left [ n\right ] \) due to the term \(\left ( 1.618\right ) ^{n}\) which grows with no limit as \(n\rightarrow \infty \).  

4.9.4.3 Part c

Using the ROC  where \(0.618<\left \vert z\right \vert <1.618\) instead of \(\left \vert z\right \vert >1.618\), then \begin{align*} y\left [ n\right ] & =\left ( \frac{1}{5}\sqrt{5}\right ) \left ( \frac{1+\sqrt{5}}{2}\right ) ^{n}u\left [ -n-1\right ] +\left ( \frac{1}{5}\sqrt{5}\right ) \left ( \frac{1-\sqrt{5}}{2}\right ) ^{n}u\left [ n\right ] \\ & =\left ( \left ( 0.447\,21\right ) \left ( 1.618\right ) ^{n}u\left [ -n-1\right ] +\left ( 0.447\,21\right ) \left ( -0.618\right ) ^{n}\right ) u\left [ n\right ] \end{align*}

which is now stable since the index on \(1.618^{n}\) run is negative instead of positive.

4.9.5 Problem 10.36

Consider the linear, discrete-time, shift-invariant system with input \(x[n]\) and output \(y[n]\) for which\[ y\left [ n-1\right ] -\frac{10}{3}y\left [ n\right ] +y\left [ n+1\right ] =x\left [ n\right ] \] is stable. Determine the unit sample response.

solution

Taking the Z transform of the difference equation gives\begin{align*} z^{-1}Y\left ( z\right ) -\frac{10}{3}Y\left ( z\right ) +zY\left ( z\right ) & =X\left ( z\right ) \\ Y\left ( z\right ) \left ( z^{-1}-\frac{10}{3}+z\right ) & =X\left ( z\right ) \end{align*}

Hence the unit sample is when \(x\left [ n\right ] =\delta \left [ n\right ] \). Hence \(X\left ( z\right ) =1\). Therefore the impulse response is\begin{align*} H\left ( z\right ) & =\frac{1}{z^{-1}-\frac{10}{3}+z}\\ & =\frac{z^{-1}}{z^{-2}-\frac{10}{3}z^{-1}+1}\\ & =\frac{z^{-1}}{\left ( z^{-1}-3\right ) \left ( z^{-1}-\frac{1}{3}\right ) } \end{align*}

Applying partial fractions\[ H\left ( z\right ) =\frac{A}{\left ( z^{-1}-3\right ) }+\frac{B}{\left ( z^{-1}-\frac{1}{3}\right ) }\] Hence \(A=\left ( \frac{z^{-1}}{\left ( z^{-1}-\frac{1}{3}\right ) }\right ) _{z^{-1}=3}=\frac{3}{\left ( 3-\frac{1}{3}\right ) }=\frac{9}{8}\) and \(B=\left ( \frac{z^{-1}}{\left ( z^{-1}-3\right ) }\right ) _{z^{-1}=\frac{1}{3}}=\frac{\frac{1}{3}}{\left ( \frac{1}{3}-3\right ) }=-\frac{1}{8}\). Therefore\begin{align} H\left ( z\right ) & =\frac{9}{8}\frac{1}{\left ( z^{-1}-3\right ) }-\frac{1}{8}\frac{1}{\left ( z^{-1}-\frac{1}{3}\right ) }\nonumber \\ & =\frac{3}{8}\frac{1}{\left ( \frac{1}{3}z^{-1}-1\right ) }-\frac{3}{8}\frac{1}{\left ( 3z^{-1}-1\right ) }\nonumber \\ & =\frac{3}{8}\frac{1}{1-3z^{-1}}-\frac{3}{8}\frac{1}{1-\frac{1}{3}z^{-1}} \tag{1} \end{align}

We see a pole at \(z=3\) and a pole at \(z=\frac{1}{3}\).

For \(\frac{1}{1-3z^{-1}}\), this is stable only for a left sided signal, this is because \(a\) which is \(3\) here is larger than \(1\). Hence its inverse Z transform is of this is \(x_{1}\left [ n\right ] =-\frac{3}{8}3^{n}u\left [ -n-1\right ] \) and for the second term \(\frac{1}{1-\frac{1}{3}z^{-1}}\) is stable for right sided signal, since \(\frac{1}{3}<1\). Hence its inverse Z transform is \(-\frac{3}{8}\left ( \frac{1}{3}\right ) ^{n}u\left [ n\right ] \). Therefore\[ h\left [ n\right ] =-\frac{3}{8}\left ( 3\right ) ^{n}u\left [ -n-1\right ] -\frac{3}{8}\left ( \frac{1}{3}\right ) ^{n}u\left [ n\right ] \]

4.9.6 Problem 10.59

   4.9.6.1 Part (a)
   4.9.6.2 Part (b)
   4.9.6.3 Part (c)

pict
Figure 4.79:Problem description

solution

4.9.6.1 Part (a)

Let the value at the branch just to the right of \(x\left [ n\right ] \) summation sign be called \(A\left [ z\right ] \).

pict
Figure 4.80:Filter diagram

Then we see that \[ Y\left ( z\right ) =A\left ( z\right ) -\frac{k}{4}z^{-1}A\left ( z\right ) \] We just need to find \(A\left ( z\right ) \). We see that \(A\left ( z\right ) =X\left ( z\right ) -\frac{k}{3}z^{-1}A\left ( z\right ) \). Hence \(A\left ( z\right ) \left ( 1+\frac{k}{3}z^{-1}\right ) =X\left ( z\right ) \) or \(A\left ( z\right ) =\frac{X\left ( z\right ) }{1+\frac{k}{3}z^{-1}}\). Therefore the above becomes\begin{align*} Y\left ( z\right ) & =\frac{X\left ( z\right ) }{1+\frac{k}{3}z^{-1}}-\frac{k}{4}z^{-1}\frac{X\left ( z\right ) }{1+\frac{k}{3}z^{-1}}\\ & =X\left ( z\right ) \left ( \frac{1}{1+\frac{k}{3}z^{-1}}-\frac{k}{4}\frac{z^{-1}}{1+\frac{k}{3}z^{-1}}\right ) \end{align*}

Hence \begin{align*} H\left ( z\right ) & =\frac{Y\left ( z\right ) }{X\left ( z\right ) }\\ & =\frac{1}{1+\frac{k}{3}z^{-1}}-\frac{k}{4}\frac{z^{-1}}{1+\frac{k}{3}z^{-1}}\\ & =\frac{1-\frac{k}{4}z^{-1}}{1+\frac{k}{3}z^{-1}} \end{align*}

The pole is when \(\frac{k}{3}z^{-1}=-1\) or \(z=-\frac{k}{3}\). Zero is when \(1-kz^{-1}=0\) or \(kz^{-1}=1\) or \(z=k\). Since this causal system, then the ROC is to the right of the most right pole. Hence \(\left \vert z\right \vert >\frac{\left \vert k\right \vert }{3}\) is the ROC.

pict
Figure 4.81:Pole zero polt. ROC is \(|z|>]frac{|k|}{3}\)
4.9.6.2 Part (b)

System is stable if it has a Discrete time Fourier transform. This implies the ROC must include the unit circle. Hence \(\frac{\left \vert k\right \vert }{3}<1\) or \(\left \vert k\right \vert <3\).

4.9.6.3 Part (c)

From part (a), the unit sample response is \(H\left ( z\right ) =\frac{1-\frac{k}{4}z^{-1}}{1+\frac{k}{3}z^{-1}}\). When \(k=1\) this becomes \(H\left ( z\right ) =\frac{1-\frac{1}{4}z^{-1}}{1+\frac{1}{3}z^{-1}}\)

Since \(x\left [ n\right ] =\left ( \frac{2}{3}\right ) ^{n}\) for all \(n\) and this is casual system, then this means \(x\left [ n\right ] =\left ( \frac{2}{3}\right ) ^{n}u\left [ n\right ] \). Therefore \[ X\left ( z\right ) =\frac{1}{1-\frac{2}{3}z^{-1}}\] Hence from part (a)\begin{align*} Y\left ( z\right ) & =H\left ( z\right ) X\left ( z\right ) \\ & =\frac{1-\frac{1}{4}z^{-1}}{1+\frac{1}{3}z^{-1}}\frac{1}{1-\frac{2}{3}z^{-1}}\\ & =\frac{1-\frac{1}{4}z^{-1}}{\left ( 1+\frac{1}{3}z^{-1}\right ) \left ( 1-\frac{2}{3}z^{-1}\right ) }\\ & =\frac{A}{1+\frac{1}{3}z^{-1}}+\frac{B}{1-\frac{2}{3}z^{-1}} \end{align*}

Therefore \(A=\left ( \frac{1-\frac{1}{4}z^{-1}}{\left ( 1-\frac{2}{3}z^{-1}\right ) }\right ) _{z^{-1}=-3}=\frac{1-\frac{1}{4}\left ( -3\right ) }{\left ( 1-\frac{2}{3}\left ( -3\right ) \right ) }=\frac{7}{12}\) and \(B=\left ( \frac{1-\frac{1}{4}z^{-1}}{\left ( 1+\frac{1}{3}z^{-1}\right ) }\right ) _{z^{-1}=\frac{3}{2}}=\left ( \frac{1-\frac{1}{4}\left ( \frac{3}{2}\right ) }{\left ( 1+\frac{1}{3}\left ( \frac{3}{2}\right ) \right ) }\right ) =\frac{5}{12}\). Hence \[ Y\left ( z\right ) =\frac{7}{12}\frac{1}{1+\frac{1}{3}z^{-1}}+\frac{5}{12}\frac{1}{1-\frac{2}{3}z^{-1}}\] Therefore\[ y\left [ n\right ] =\frac{7}{12}\left ( -\frac{1}{3}\right ) ^{n}u\left [ n\right ] +\frac{5}{12}\left ( \frac{2}{3}\right ) ^{n}u\left [ n\right ] \]

The following is a plot of the solution

pict
Figure 4.82:Plot of \(y[n]\)

pict
Figure 4.83:Code used

4.9.7 key solution

PDF