2.2.89 Problems 8801 to 8900

Table 2.179: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8801

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.606

8802

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.855

8803

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

7.233

8804

\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \]

[_Riccati]

5.803

8805

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.755

8806

\[ {}y^{\prime \prime }-y^{\prime } x -x y-2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.773

8807

\[ {}y^{\prime \prime }-y^{\prime } x -x y-3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.801

8808

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{2}-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.101

8809

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.256

8810

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{4}-6 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.237

8811

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{5}+24 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.211

8812

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.845

8813

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.990

8814

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.167

8815

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.938

8816

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.877

8817

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.925

8818

\[ {}y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.303

8819

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.198

8820

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.334

8821

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.386

8822

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.319

8823

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.334

8824

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.123

8825

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

8826

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

8827

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.331

8828

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.358

8829

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

8830

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.340

8831

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.407

8832

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.167

8833

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.059

8834

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.656

8835

\[ {}y^{\prime \prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.736

8836

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.521

8837

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.573

8838

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.893

8839

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.784

8840

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11.035

8841

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.879

8842

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.941

8843

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.987

8844

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.694

8845

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

36.838

8846

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.093

8847

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.177

8848

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.799

8849

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.200

8850

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.122

8851

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.182

8852

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10.594

8853

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.955

8854

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

100.115

8855

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.081

8856

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.039

8857

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.043

8858

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.084

8859

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

[[_2nd_order, _missing_x]]

1.427

8860

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

3.162

8861

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.754

8862

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.737

8863

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.023

8864

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.764

8865

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.737

8866

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.874

8867

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.993

8868

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.893

8869

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.894

8870

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.067

8871

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.968

8872

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.596

8873

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.764

8874

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.745

8875

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.156

8876

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.221

8877

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

[[_3rd_order, _with_linear_symmetries]]

4.307

8878

\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.314

8879

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.949

8880

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

[[_2nd_order, _missing_y]]

397.279

8881

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.649

8882

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

[NONE]

0.247

8883

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.670

8884

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.917

8885

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.986

8886

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.940

8887

\[ {}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \]

[[_homogeneous, ‘class D‘]]

3.394

8888

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (1+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.642

8889

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

2.102

8890

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.661

8891

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.799

8892

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.735

8893

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.773

8894

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.854

8895

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.708

8896

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.942

8897

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.897

8898

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.762

8899

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.943

8900

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.905