2.2.89 Problems 8801 to 8900

Table 2.179: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8801

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.402

8802

\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.140

8803

\[ {}y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.590

8804

\[ {}y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.718

8805

\[ {}y^{\prime \prime } y^{\prime }+y^{n} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.084

8806

\[ {}y^{\prime } = \left (x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

148.632

8807

\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.140

8808

\[ {}y^{\prime \prime }+x y^{\prime }+y {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.305

8809

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.115

8810

\[ {}3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.582

8811

\[ {}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.307

8812

\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.921

8813

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.130

8814

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.695

8815

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.324

8816

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-c^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.046

8817

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.172

8818

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.960

8819

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8.423

8820

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.417

8821

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.922

8822

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

27.496

8823

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.608

8824

\[ {}\cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.705

8825

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.757

8826

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x^{m +1} \]

[[_2nd_order, _with_linear_symmetries]]

1.931

8827

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.281

8828

\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[_Lienard]

3.157

8829

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.694

8830

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.674

8831

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.262

8832

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15.432

8833

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.253

8834

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.553

8835

\[ {}x^{2} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.148

8836

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.177

8837

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

1.521

8838

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

1.677

8839

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

1.369

8840

\[ {}y^{\prime } = x -y^{2} \]

[[_Riccati, _special]]

0.925

8841

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.194

8842

\[ {}x^{2} y^{\prime \prime }-x \left (x +6\right ) y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.383

8843

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

0.844

8844

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

2.165

8845

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.173

8846

\[ {}y^{\prime \prime \prime }-x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.041

8847

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

1.676

8848

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.284

8849

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[_Gegenbauer]

0.256

8850

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

[_Gegenbauer]

0.266

8851

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.480

8852

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \]

[_Gegenbauer]

0.237

8853

\[ {}3 y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.282

8854

\[ {}5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.319

8855

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.310

8856

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.341

8857

\[ {}y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.273

8858

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.349

8859

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.276

8860

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.381

8861

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.133

8862

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.275

8863

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.295

8864

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.201

8865

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.313

8866

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

8867

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.280

8868

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.313

8869

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.280

8870

\[ {}2 y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.287

8871

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.279

8872

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.291

8873

\[ {}y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.280

8874

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.066

8875

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.145

8876

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.299

8877

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.187

8878

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.381

8879

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.153

8880

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.116

8881

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.281

8882

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.186

8883

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.188

8884

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.145

8885

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.203

8886

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.121

8887

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.127

8888

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.132

8889

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.195

8890

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.290

8891

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.155

8892

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.304

8893

\[ {}\left (x +2\right ) y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.359

8894

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (4+x \right ) y^{\prime }+\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.298

8895

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.301

8896

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.421

8897

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.535

8898

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.332

8899

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.346

8900

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }+20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.336