2.2.78 Problems 7701 to 7800

Table 2.157: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7701

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

0.092

7702

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.076

7703

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

[[_high_order, _missing_x]]

0.077

7704

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

[[_3rd_order, _missing_x]]

0.068

7705

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

[[_high_order, _missing_x]]

0.073

7706

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

[[_high_order, _missing_x]]

0.079

7707

\[ {}y^{\prime \prime \prime \prime } = 0 \]

[[_high_order, _quadrature]]

0.037

7708

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

[[_high_order, _quadrature]]

0.148

7709

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

0.127

7710

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]
i.c.

[[_3rd_order, _missing_x]]

0.158

7711

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

[[_3rd_order, _missing_y]]

0.119

7712

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.124

7713

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.125

7714

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_y]]

0.184

7715

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.070

7716

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.077

7717

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.826

7718

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

2.199

7719

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.655

7720

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.867

7721

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

43.375

7722

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.076

7723

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.163

7724

\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

20.288

7725

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

11.091

7726

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

74.007

7727

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

2.340

7728

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.471

7729

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

19.046

7730

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

2.906

7731

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]

[[_2nd_order, _with_linear_symmetries]]

1.081

7732

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

0.977

7733

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.336

7734

\[ {}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.539

7735

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

27.511

7736

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.522

7737

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {2}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.802

7738

\[ {}y^{\prime \prime }+4 y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.764

7739

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.532

7740

\[ {}y^{\prime \prime }+y = -8 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.735

7741

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

0.746

7742

\[ {}y^{\prime \prime }+y^{\prime } = \frac {x -1}{x} \]

[[_2nd_order, _missing_y]]

0.788

7743

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.426

7744

\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.545

7745

\[ {}y^{\prime }+y = \cos \left (x \right ) \]

[[_linear, ‘class A‘]]

1.191

7746

\[ {}y^{\prime \prime } = -3 y \]
i.c.

[[_2nd_order, _missing_x]]

97.530

7747

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.805

7748

\[ {}y^{\prime } = 2 x y \]

[_separable]

0.615

7749

\[ {}y^{\prime } = 2 x y \]

[_separable]

1.156

7750

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

0.311

7751

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

0.906

7752

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

0.526

7753

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

1.028

7754

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

0.308

7755

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

1.022

7756

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.533

7757

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

1.032

7758

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

0.553

7759

\[ {}y^{\prime }-y = x^{2} \]

[[_linear, ‘class A‘]]

1.038

7760

\[ {}x y^{\prime } = y \]

[_separable]

0.457

7761

\[ {}x y^{\prime } = y \]

[_separable]

1.336

7762

\[ {}x^{2} y^{\prime } = y \]

[_separable]

0.090

7763

\[ {}x^{2} y^{\prime } = y \]

[_separable]

1.347

7764

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

0.493

7765

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

1.291

7766

\[ {}y^{\prime }+\frac {y}{x} = x \]

[_linear]

1.228

7767

\[ {}y^{\prime } = \frac {1}{\sqrt {-x^{2}+1}} \]

[_quadrature]

0.356

7768

\[ {}y^{\prime } = 1+y \]

[_quadrature]

0.309

7769

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

0.568

7770

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

1.235

7771

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.605

7772

\[ {}y^{\prime \prime }-y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.651

7773

\[ {}y^{\prime \prime }+2 x y^{\prime }-y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.644

7774

\[ {}y^{\prime \prime }+y^{\prime }-x^{2} y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.670

7775

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.677

7776

\[ {}y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.646

7777

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.627

7778

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.610

7779

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.573

7780

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.572

7781

\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.713

7782

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.503

7783

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.890

7784

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 p y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.700

7785

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.131

7786

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.461

7787

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.161

7788

\[ {}\left (3 x +1\right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.562

7789

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.824

7790

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.879

7791

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.308

7792

\[ {}x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.894

7793

\[ {}x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.176

7794

\[ {}x^{3} y^{\prime \prime }+\left (\cos \left (2 x \right )-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.044

7795

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.089

7796

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x y = 0 \]

[[_Emden, _Fowler]]

1.305

7797

\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \]

[[_Emden, _Fowler]]

0.868

7798

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.051

7799

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.017

7800

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.082