2.2.77 Problems 7601 to 7700

Table 2.155: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7601

\[ {}-y+x y^{\prime } = 2 x \]
i.c.

[_linear]

1.556

7602

\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \]
i.c.

[_linear]

1.326

7603

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

3.317

7604

\[ {}\csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \]
i.c.

[_separable]

2.822

7605

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.604

7606

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.501

7607

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4.974

7608

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

1.330

7609

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.248

7610

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.686

7611

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.310

7612

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

1.182

7613

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.834

7614

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.847

7615

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

2.036

7616

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.263

7617

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.850

7618

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

0.823

7619

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2.083

7620

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.868

7621

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.845

7622

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.838

7623

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.875

7624

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

1.895

7625

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

2.081

7626

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

2.157

7627

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.832

7628

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.274

7629

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.273

7630

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

0.821

7631

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.100

7632

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.402

7633

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.138

7634

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.128

7635

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.523

7636

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.457

7637

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

2.618

7638

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

1.135

7639

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

[[_Emden, _Fowler]]

0.971

7640

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.744

7641

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.158

7642

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.025

7643

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

2.840

7644

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.198

7645

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.964

7646

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.115

7647

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.587

7648

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.042

7649

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

[[_2nd_order, _with_linear_symmetries]]

15.478

7650

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.139

7651

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.457

7652

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.855

7653

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

1.618

7654

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.037

7655

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.128

7656

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

1.585

7657

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.367

7658

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.786

7659

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.191

7660

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_3rd_order, _missing_y]]

0.627

7661

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.972

7662

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.159

7663

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.110

7664

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

10.250

7665

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.005

7666

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.043

7667

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.754

7668

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.427

7669

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.627

7670

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.358

7671

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.935

7672

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.496

7673

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.224

7674

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

1.014

7675

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

1.028

7676

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.454

7677

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.539

7678

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.625

7679

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.319

7680

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

2.383

7681

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.453

7682

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.386

7683

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.307

7684

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.317

7685

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

[_Gegenbauer]

0.342

7686

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.388

7687

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.338

7688

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler]]

0.309

7689

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.335

7690

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.656

7691

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.367

7692

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.066

7693

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.074

7694

\[ {}y^{\prime \prime \prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.074

7695

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.072

7696

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.068

7697

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.073

7698

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.074

7699

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.082

7700

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

[[_high_order, _missing_x]]

0.079